Question #292371

Let T

 be a function from R

3

→R

3

 defined by

T(x,y,z)=(x−y+2z,2x+y,−x−2y+2z)


(i)

(ii)

  Show that T is a Linear Transformation

  Find nullity of T



1
Expert's answer
2022-02-01T12:09:19-0500

A transformation T is linear if


1) T(ax)= aT(x)


2) T(x)=A(x) where A is a matrix.


Part 1


Ta(x,y,z)== T(ax,ay,az)

=(axay+2az,2ax+ay,ax2ay+2az)=(ax-ay+2az,2ax+ay,-ax-2ay+2az)


=a(xy+2z,2x+y,x2y+2z)=a(x-y+2z,2x+y,-x-2y+2z)

=aT(x,y,z)=aT(x,y,z)



T(x,y,z)=x(121)+y(112)+z(202)T(x,y,z)=x\begin{pmatrix} 1 \\ 2\\ -1 \end{pmatrix}+y\begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}+z\begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}




T(x,y,z)=(112210122)T(x,y,z)=\begin{pmatrix} 1&-1&2 \\ 2&1&0 \\ -1&-2&2 \end{pmatrix} (xyz)\begin{pmatrix} x \\ y\\ z \end{pmatrix}


Therefore T is linear


Part 2


13(R22R1R2)\frac{1}{3}(R_2-2R_1\to\>R_2)

R3+R1R3R_3+R_1\to\>R_3



(1121143034)\begin{pmatrix} 1&-1& 2\\ 1&1 & \frac{-4}{3}\\ 0&-3&4 \end{pmatrix}


R1+R2R1R_1+R_2\to\>R_1

R3+3R2R3R_3+3R_2\to\>R_3


(10230143000)\begin{pmatrix} 1&0&\frac{2}{3} \\ 0&1&\frac{-4}{3} \\ 0&0&0 \end{pmatrix}


Nullity is =1=1





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS