A transformation T is linear if
1) T(ax)= aT(x)
2) T(x)=A(x) where A is a matrix.
Part 1
Ta(x,y,z)= T(ax,ay,az)
=(ax−ay+2az,2ax+ay,−ax−2ay+2az)
=a(x−y+2z,2x+y,−x−2y+2z)
=aT(x,y,z)
T(x,y,z)=x⎝⎛12−1⎠⎞+y⎝⎛−11−2⎠⎞+z⎝⎛202⎠⎞
T(x,y,z)=⎝⎛12−1−11−2202⎠⎞ ⎝⎛xyz⎠⎞
Therefore T is linear
Part 2
31(R2−2R1→R2)
R3+R1→R3
⎝⎛110−11−323−44⎠⎞
R1+R2→R1
R3+3R2→R3
⎝⎛100010323−40⎠⎞
Nullity is =1
Comments