A=⎝⎛124212421⎠⎞
The characteristic polynomial of this matrix is
PA(λ)=det(A−λI)=det⎝⎛1−λ2421−λ2421−λ⎠⎞=
(1−λ)3+16+16−16(1−λ)−4(1−λ)−4(1−λ)=
(1−λ)3−24(1−λ)+32
By the Cayley - Hamilton theorem, it must be PA(A)=0. Let's verify this equality.
PA(A)=(I−A)3−24(I−A)+32I
I−A=⎝⎛0−2−4−20−2−4−20⎠⎞
(I−A)2=⎝⎛20848884820⎠⎞
(I−A)3=⎝⎛−32−48−96−48−32−48−96−48−32⎠⎞
PA(A)=⎝⎛−32−48−96−48−32−48−96−48−32⎠⎞−24⎝⎛0−2−4−20−2−4−20⎠⎞+
+⎝⎛320003200032⎠⎞=⎝⎛000000000⎠⎞
As we can see, the Cayley - Hamilton equality is true.
Comments