Question #291928

Verify cayley hamiltan theorem for A=[ 124212421]

1
Expert's answer
2022-02-01T14:53:41-0500

A=(124212421)A=\begin{pmatrix} 1&2&4\\ 2&1&2\\ 4&2&1 \end{pmatrix}

The characteristic polynomial of this matrix is

PA(λ)=det(AλI)=det(1λ2421λ2421λ)=P_A(\lambda)=\det(A-\lambda I)=\det\begin{pmatrix} 1-\lambda&2&4\\ 2&1-\lambda&2\\ 4&2&1-\lambda \end{pmatrix}=

(1λ)3+16+1616(1λ)4(1λ)4(1λ)=(1-\lambda)^3+16+16-16(1-\lambda)-4(1-\lambda)-4(1-\lambda)=

(1λ)324(1λ)+32(1-\lambda)^3-24(1-\lambda)+32

By the Cayley - Hamilton theorem, it must be PA(A)=0P_A(A)=0. Let's verify this equality.

PA(A)=(IA)324(IA)+32IP_A(A)=(I-A)^3-24(I-A)+32I

IA=(024202420)I-A=\begin{pmatrix} 0&-2&-4\\ -2&0&-2\\ -4&-2&0 \end{pmatrix}

(IA)2=(20848884820)(I-A)^2=\begin{pmatrix} 20&8&4\\ 8&8&8\\ 4&8&20 \end{pmatrix}

(IA)3=(324896483248964832)(I-A)^3=\begin{pmatrix} -32 & -48 & -96\\ -48 & -32 & -48\\ -96 & -48 & -32 \end{pmatrix}

PA(A)=(324896483248964832)24(024202420)+P_A(A)=\begin{pmatrix} -32 & -48 & -96\\ -48 & -32 & -48\\ -96 & -48 & -32 \end{pmatrix}- 24\begin{pmatrix} 0&-2&-4\\ -2&0&-2\\ -4&-2&0 \end{pmatrix}+

+(320003200032)=(000000000)+\begin{pmatrix} 32&0&0\\ 0&32&0\\ 0&0&32 \end{pmatrix}=\begin{pmatrix} 0&0&0\\ 0&0&0\\ 0&0&0 \end{pmatrix}

As we can see, the Cayley - Hamilton equality is true.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS