Question #256860

Solve the system of equations 2x + y + 5z = 18 5x + 3y – 2z = 2 x – 6y + 2z = 1 using Gauss elimination method with partial pivoting. Show all the steps.




1
Expert's answer
2021-10-27T06:22:34-0400
(215532162)(xyz)=(1821)\begin{pmatrix} 2 & 1 & 5 \\ 5 & 3 & -2 \\ 1 & -6 & 2 \\ \end{pmatrix}\begin{pmatrix} x \\ y \\ z\\ \end{pmatrix}=\begin{pmatrix} 18 \\ 2 \\ 1 \\ \end{pmatrix}

Augmented matrix


(2151853221621)\begin{pmatrix} 2 & 1 & 5 & & 18 \\ 5 & 3 & -2 & & 2 \\ 1 & -6 & 2 & & 1 \\ \end{pmatrix}

R1R2R_1\leftrightarrow R_2


(5322215181621)\begin{pmatrix} 5 & 3 & -2 & & 2 \\ 2 & 1 &5 & & 18 \\ 1 & -6 & 2 & & 1 \\ \end{pmatrix}

R2=R22R1/5R_2=R_2-2R_1/5


(532201/529/586/51621)\begin{pmatrix} 5 & 3 & -2 & & 2 \\ 0 & -1/5 & 29/5 & & 86/5\\ 1 & -6 & 2 & & 1 \\ \end{pmatrix}

R3=R3R1/5R_3=R_3-R_1/5


(532201/529/586/5033/512/53/5)\begin{pmatrix} 5 & 3 & -2 & & 2 \\ 0 & -1/5 & 29/5 & & 86/5\\ 0 & -33/5 & 12/5 & & 3/5 \\ \end{pmatrix}

R3=R333R2R_3=R_3-33R_2


(532201/529/586/500189567)\begin{pmatrix} 5 & 3 & -2 & & 2 \\ 0 & -1/5 & 29/5 & & 86/5\\ 0 & 0 & -189 & & -567 \\ \end{pmatrix}

Back Substitute


5x+3y2z=25x+3y-2z=2

15y+295z=865-\dfrac{1}{5}y+\dfrac{29}{5}z=\dfrac{86}{5}

189z=567-189z=-567



5x+3y2(3)=25x+3y-2(3)=2

y+29(3)=86-y+29(3)=86

z=3z=3



5x+3(1)6=25x+3(1)-6=2

y=1y=1

z=3z=3



x=1x=1

y=1y=1

z=3z=3

(1,1,3)(1,1,3)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS