( x 2 x 2 2 x 4 + x 5 x 4 x 5 ) = x 2 ( 1 1 0 0 ) + x 4 ( 0 0 2 1 0 ) + x 5 ( 0 0 1 0 1 ) \begin{pmatrix}
x_2\\
x_2\\2x_4+x_5\\x_4\\x_5
\end{pmatrix}=x_2\begin{pmatrix}
1\\1
\\0\\0
\end{pmatrix}+x_4\begin{pmatrix}
0\\0
\\2\\1\\0
\end{pmatrix}+x_5\begin{pmatrix}
0\\0\\1\\0\\1
\end{pmatrix} ⎝ ⎛ x 2 x 2 2 x 4 + x 5 x 4 x 5 ⎠ ⎞ = x 2 ⎝ ⎛ 1 1 0 0 ⎠ ⎞ + x 4 ⎝ ⎛ 0 0 2 1 0 ⎠ ⎞ + x 5 ⎝ ⎛ 0 0 1 0 1 ⎠ ⎞
Matrix S = ( 1 0 0 1 0 0 0 2 1 0 1 0 0 0 1 ) S=\begin{pmatrix}
1& 0&0\\
1&0&0\\0&2&1\\0&1&0\\0&0&1
\end{pmatrix} S = ⎝ ⎛ 1 1 0 0 0 0 0 2 1 0 0 0 1 0 1 ⎠ ⎞
rref ofS = ( 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 ) S=\begin{pmatrix}
1&0&0 \\
0&1&0\\0&0&1\\0&0&0\\0&0&0
\end{pmatrix} S = ⎝ ⎛ 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 ⎠ ⎞
The three vectors are linearly independent and they are the basis of S
Dimension of S=3
PART 2
( x + y x − y x + 2 z ) = x ( 1 1 1 ) + y ( 1 − 1 0 ) + z ( 0 0 2 ) \begin{pmatrix}
x+y\\x-y\\
x+2z
\end{pmatrix}=x\begin{pmatrix}
1\\
1\\1\\
\end{pmatrix}+y\begin{pmatrix}
1\\-1\\0\\
\end{pmatrix}+z\begin{pmatrix}
0 \\0
\\2
\end{pmatrix} ⎝ ⎛ x + y x − y x + 2 z ⎠ ⎞ = x ⎝ ⎛ 1 1 1 ⎠ ⎞ + y ⎝ ⎛ 1 − 1 0 ⎠ ⎞ + z ⎝ ⎛ 0 0 2 ⎠ ⎞
Matrix T = ( 1 1 0 1 − 1 0 1 0 2 ) T=\begin{pmatrix}
1&1&0\\
1&-1&0\\1&0&2
\end{pmatrix} T = ⎝ ⎛ 1 1 1 1 − 1 0 0 0 2 ⎠ ⎞
rref of T = ( 1 0 0 0 1 0 0 0 1 ) T=\begin{pmatrix}
1&0&0\\
0&1&0\\0&0&1
\end{pmatrix} T = ⎝ ⎛ 1 0 0 0 1 0 0 0 1 ⎠ ⎞
The vectors are linearly independent.
The basis of the range T T T is
[ ( 1 1 1 ) , ( 1 − 1 0 ) , ( 0 0 2 ) ] [\begin{pmatrix}
1\\
1\\1
\end{pmatrix}\>,\>\begin{pmatrix}
1 \\-1
\\0
\end{pmatrix}\>,\>\begin{pmatrix}
0 \\0\\
2
\end{pmatrix}] [ ⎝ ⎛ 1 1 1 ⎠ ⎞ , ⎝ ⎛ 1 − 1 0 ⎠ ⎞ , ⎝ ⎛ 0 0 2 ⎠ ⎞ ]
3, Part1
Every linear transformation is associated with a matrix
( u − v + 2 w 5 v − w ) = u ( 1 0 ) + v ( − 1 5 ) + w ( 2 − 1 ) \begin{pmatrix}
u-v+2w\\
5v-w
\end{pmatrix}=u\begin{pmatrix}
1 \\
0
\end{pmatrix}+v\begin{pmatrix}
-1\\
5
\end{pmatrix}+w\begin{pmatrix}
2\\
-1
\end{pmatrix} ( u − v + 2 w 5 v − w ) = u ( 1 0 ) + v ( − 1 5 ) + w ( 2 − 1 )
T 1 = ( 1 − 1 2 0 5 − 1 ) T_1=\begin{pmatrix}
1&-1&2\\
0&5&-1
\end{pmatrix} T 1 = ( 1 0 − 1 5 2 − 1 )
⟹ \implies ⟹ T1 is linear
3) Part2
∫ a b k 2 p ( x ) d x = k ∫ a b 2 p ( x ) d x \int_a^bk2p(x)\>dx=k\int_a^b2p(x)\>dx ∫ a b k 2 p ( x ) d x = k ∫ a b 2 p ( x ) d x
∫ a b 2 p ( x 1 + x 2 ) d x \int_a^b2p(x_1+x_2)\>dx ∫ a b 2 p ( x 1 + x 2 ) d x
= ∫ a b 2 p ( x 1 ) d x + ∫ a b 2 p ( x 2 ) d x =\int_a^b2p(x_1)\>dx + \int_a^b2p(x_2)\>dx = ∫ a b 2 p ( x 1 ) d x + ∫ a b 2 p ( x 2 ) d x
Therefore T 2 is linear
3). Part 3
T 3 P ( u 1 + u 2 ) = ( u 1 + u 2 ) P ( u 1 + u 2 ) + ( u 1 + u 2 ) T_3P(u_1+u_2)=(u_1+u_2)P(u_1+u_2)+(u_1+u_2) T 3 P ( u 1 + u 2 ) = ( u 1 + u 2 ) P ( u 1 + u 2 ) + ( u 1 + u 2 )
T 3 P ( u 1 ) = u 1 P ( u 1 ) + u 1 T_3P(u_1)=u_1P(u_1)+u_1 T 3 P ( u 1 ) = u 1 P ( u 1 ) + u 1
T 3 P ( u 2 ) = u 2 P ( u 2 ) + u 2 T_3P(u_2)=u_2P(u_2)+u_2 T 3 P ( u 2 ) = u 2 P ( u 2 ) + u 2
∴ T 3 P ( u 1 + u 2 ) / = T 3 P ( u 1 ) \therefore \>T_3P(u_1+u_2) \mathrlap{\,/}{=}T_3P(u_1) ∴ T 3 P ( u 1 + u 2 ) / = T 3 P ( u 1 )
+ T 3 P ( u 2 ) +T_3P(u_2) + T 3 P ( u 2 )
Therefore T 3 is not linear
Comments