If A  is an n×n matrix, then the sum of the n eigenvalues of A  is the trace of A and the product of the n eigenvalues is the determinant of A. 
A=⎝⎛202123001⎠⎞ 
A−λI=⎝⎛2−λ0212−λ3001−λ⎠⎞ 
det(A−λI)=∣∣2−λ0212−λ3001−λ∣∣ 
=(2−λ)∣∣2−λ301−λ∣∣−1∣∣0201−λ∣∣+0∣∣022−λ3∣∣ 
=(2−λ)(2−λ)(1−λ) Characteristic equation
det(A−λI)=0 
(2−λ)(2−λ)(1−λ)=0 
λ1=1,λ2=2,λ3=2These are the eigenvalues.
Hence
detA=λ1λ2λ3=1(2)(2)=4=0 => matrix A consistent.
Comments