If A A A is an n × n n × n n × n matrix, then the sum of the n n n eigenvalues of A A A is the trace of A A A and the product of the n n n eigenvalues is the determinant of A . A. A .
A = ( 2 1 0 0 2 0 2 3 1 ) A=\begin{pmatrix}
2 & 1 & 0 \\
0 & 2 & 0\\
2 &3 & 1
\end{pmatrix} A = ⎝ ⎛ 2 0 2 1 2 3 0 0 1 ⎠ ⎞
A − λ I = ( 2 − λ 1 0 0 2 − λ 0 2 3 1 − λ ) A-\lambda I=\begin{pmatrix}
2-\lambda & 1 & 0 \\
0 & 2-\lambda & 0\\
2 &3 & 1-\lambda
\end{pmatrix} A − λ I = ⎝ ⎛ 2 − λ 0 2 1 2 − λ 3 0 0 1 − λ ⎠ ⎞
det ( A − λ I ) = ∣ 2 − λ 1 0 0 2 − λ 0 2 3 1 − λ ∣ \det (A-\lambda I)=\begin{vmatrix}
2-\lambda & 1 & 0 \\
0 & 2-\lambda & 0\\
2 &3 & 1-\lambda
\end{vmatrix} det ( A − λ I ) = ∣ ∣ 2 − λ 0 2 1 2 − λ 3 0 0 1 − λ ∣ ∣
= ( 2 − λ ) ∣ 2 − λ 0 3 1 − λ ∣ − 1 ∣ 0 0 2 1 − λ ∣ + 0 ∣ 0 2 − λ 2 3 ∣ =(2-\lambda)\begin{vmatrix}
2-\lambda & 0 \\
3 & 1-\lambda
\end{vmatrix}-1\begin{vmatrix}
0 & 0 \\
2 & 1-\lambda
\end{vmatrix}+0\begin{vmatrix}
0 & 2-\lambda \\
2 & 3
\end{vmatrix} = ( 2 − λ ) ∣ ∣ 2 − λ 3 0 1 − λ ∣ ∣ − 1 ∣ ∣ 0 2 0 1 − λ ∣ ∣ + 0 ∣ ∣ 0 2 2 − λ 3 ∣ ∣
= ( 2 − λ ) ( 2 − λ ) ( 1 − λ ) =(2-\lambda)(2-\lambda)(1-\lambda) = ( 2 − λ ) ( 2 − λ ) ( 1 − λ ) Characteristic equation
det ( A − λ I ) = 0 \det (A-\lambda I)=0 det ( A − λ I ) = 0
( 2 − λ ) ( 2 − λ ) ( 1 − λ ) = 0 (2-\lambda)(2-\lambda)(1-\lambda)=0 ( 2 − λ ) ( 2 − λ ) ( 1 − λ ) = 0
λ 1 = 1 , λ 2 = 2 , λ 3 = 2 \lambda_1=1, \lambda_2=2, \lambda_3=2 λ 1 = 1 , λ 2 = 2 , λ 3 = 2 These are the eigenvalues.
Hence
det A = λ 1 λ 2 λ 3 = 1 ( 2 ) ( 2 ) = 4 ≠ 0 \det A=\lambda_1\lambda_2\lambda_3=1(2)(2)=4\not=0 det A = λ 1 λ 2 λ 3 = 1 ( 2 ) ( 2 ) = 4 = 0 => matrix A A A consistent.
Comments