1.
x 1 = A x 0 = ( 1 1 2 2 1 1 1 1 3 ) ( 1 0 0 ) = ( 1 2 1 ) x_1=Ax_0=\begin{pmatrix}
1 & 1&2 \\
2 & 1&1\\
1&1&3
\end{pmatrix}\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}=\begin{pmatrix}
1 \\
2 \\
1
\end{pmatrix} x 1 = A x 0 = ⎝ ⎛ 1 2 1 1 1 1 2 1 3 ⎠ ⎞ ⎝ ⎛ 1 0 0 ⎠ ⎞ = ⎝ ⎛ 1 2 1 ⎠ ⎞
x 2 = A x 1 = ( 1 1 2 2 1 1 1 1 3 ) ( 1 2 1 ) = ( 5 5 6 ) x_2=Ax_1=\begin{pmatrix}
1 & 1&2 \\
2 & 1&1\\
1&1&3
\end{pmatrix}\begin{pmatrix}
1 \\
2 \\
1
\end{pmatrix}=\begin{pmatrix}
5 \\
5 \\
6
\end{pmatrix} x 2 = A x 1 = ⎝ ⎛ 1 2 1 1 1 1 2 1 3 ⎠ ⎞ ⎝ ⎛ 1 2 1 ⎠ ⎞ = ⎝ ⎛ 5 5 6 ⎠ ⎞
x 3 = A x 2 = ( 1 1 2 2 1 1 1 1 3 ) ( 5 5 6 ) = ( 22 21 28 ) x_3=Ax_2=\begin{pmatrix}
1 & 1&2 \\
2 & 1&1\\
1&1&3
\end{pmatrix}\begin{pmatrix}
5 \\
5 \\
6
\end{pmatrix}=\begin{pmatrix}
22 \\
21 \\
28
\end{pmatrix} x 3 = A x 2 = ⎝ ⎛ 1 2 1 1 1 1 2 1 3 ⎠ ⎞ ⎝ ⎛ 5 5 6 ⎠ ⎞ = ⎝ ⎛ 22 21 28 ⎠ ⎞
x 4 = A x 3 = ( 1 1 2 2 1 1 1 1 3 ) ( 22 21 28 ) = ( 99 93 127 ) x_4=Ax_3=\begin{pmatrix}
1 & 1&2 \\
2 & 1&1\\
1&1&3
\end{pmatrix}\begin{pmatrix}
22 \\
21 \\
28
\end{pmatrix}=\begin{pmatrix}
99 \\
93\\
127
\end{pmatrix} x 4 = A x 3 = ⎝ ⎛ 1 2 1 1 1 1 2 1 3 ⎠ ⎞ ⎝ ⎛ 22 21 28 ⎠ ⎞ = ⎝ ⎛ 99 93 127 ⎠ ⎞
x 5 = A x 4 = ( 1 1 2 2 1 1 1 1 3 ) ( 99 93 127 ) = ( 446 418 573 ) = 573 ( 0.78 0.73 1 ) x_5=Ax_4=\begin{pmatrix}
1 & 1&2 \\
2 & 1&1\\
1&1&3
\end{pmatrix}\begin{pmatrix}
99 \\
93 \\
127
\end{pmatrix}=\begin{pmatrix}
446 \\
418\\
573
\end{pmatrix}=573\begin{pmatrix}
0.78 \\
0.73\\
1
\end{pmatrix} x 5 = A x 4 = ⎝ ⎛ 1 2 1 1 1 1 2 1 3 ⎠ ⎞ ⎝ ⎛ 99 93 127 ⎠ ⎞ = ⎝ ⎛ 446 418 573 ⎠ ⎞ = 573 ⎝ ⎛ 0.78 0.73 1 ⎠ ⎞
dominant eigenvector:
x = ( 0.78 0.73 1 ) x=\begin{pmatrix}
0.78 \\
0.73\\
1
\end{pmatrix} x = ⎝ ⎛ 0.78 0.73 1 ⎠ ⎞
A x = ( 1 1 2 2 1 1 1 1 3 ) ( 0.78 0.73 1 ) = ( 2.51 4.75 10.26 ) Ax=\begin{pmatrix}
1 & 1&2 \\
2 & 1&1\\
1&1&3
\end{pmatrix}\begin{pmatrix}
0.78 \\
0.73\\
1
\end{pmatrix}=\begin{pmatrix}
2.51 \\
4.75\\
10.26
\end{pmatrix} A x = ⎝ ⎛ 1 2 1 1 1 1 2 1 3 ⎠ ⎞ ⎝ ⎛ 0.78 0.73 1 ⎠ ⎞ = ⎝ ⎛ 2.51 4.75 10.26 ⎠ ⎞
A x ⋅ x = 15.69 Ax\cdot x=15.69 A x ⋅ x = 15.69
x ⋅ x = 2.14 x\cdot x=2.14 x ⋅ x = 2.14
dominant eigenvalue:
λ = A x ⋅ x x ⋅ x = 15.69 2.14 = 7.33 \lambda=\frac{Ax\cdot x}{x\cdot x}=\frac{15.69}{2.14}=7.33 λ = x ⋅ x A x ⋅ x = 2.14 15.69 = 7.33
2.
( 1 1 2 ∣ 1 0 0 2 1 1 ∣ 0 1 0 1 1 3 ∣ 0 0 1 ) → ( 1 0 0 ∣ − 2 1 1 0 1 0 ∣ 5 − 1 − 3 0 0 1 ∣ − 1 0 1 ) \begin{pmatrix}
1 & 1&2 &|1&0&0\\
2 & 1&1&|0&1&0\\
1&1&3&|0&0&1
\end{pmatrix}\to\begin{pmatrix}
1 & 0&0 &|-2&1&1\\
0 & 1&0&|5&-1&-3\\
0&0&1&|-1&0&1
\end{pmatrix} ⎝ ⎛ 1 2 1 1 1 1 2 1 3 ∣1 ∣0 ∣0 0 1 0 0 0 1 ⎠ ⎞ → ⎝ ⎛ 1 0 0 0 1 0 0 0 1 ∣ − 2 ∣5 ∣ − 1 1 − 1 0 1 − 3 1 ⎠ ⎞
A − 1 = ( − 2 1 1 5 − 1 − 3 1 0 1 ) A^{-1}=\begin{pmatrix}
-2& 1&1 \\
5 & -1&-3\\
1&0&1
\end{pmatrix} A − 1 = ⎝ ⎛ − 2 5 1 1 − 1 0 1 − 3 1 ⎠ ⎞
x 1 = A − 1 x 0 = ( − 2 1 1 5 − 1 − 3 1 0 1 ) ( 1 0 0 ) = ( − 2 5 1 ) x_1=A^{-1}x_0=\begin{pmatrix}
-2& 1&1 \\
5 & -1&-3\\
1&0&1
\end{pmatrix}\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}=\begin{pmatrix}
-2 \\
5 \\
1
\end{pmatrix} x 1 = A − 1 x 0 = ⎝ ⎛ − 2 5 1 1 − 1 0 1 − 3 1 ⎠ ⎞ ⎝ ⎛ 1 0 0 ⎠ ⎞ = ⎝ ⎛ − 2 5 1 ⎠ ⎞
x 2 = A − 1 x 1 = ( − 2 1 1 5 − 1 − 3 1 0 1 ) ( − 2 5 1 ) = ( 2 2 − 1 ) x_2=A^{-1}x_1=\begin{pmatrix}
-2& 1&1 \\
5 & -1&-3\\
1&0&1
\end{pmatrix}\begin{pmatrix}
-2 \\
5 \\
1
\end{pmatrix}=\begin{pmatrix}
2 \\
2 \\
-1
\end{pmatrix} x 2 = A − 1 x 1 = ⎝ ⎛ − 2 5 1 1 − 1 0 1 − 3 1 ⎠ ⎞ ⎝ ⎛ − 2 5 1 ⎠ ⎞ = ⎝ ⎛ 2 2 − 1 ⎠ ⎞
x 3 = A − 1 x 2 = ( − 2 1 1 5 − 1 − 3 1 0 1 ) ( 2 2 − 1 ) = ( − 3 11 1 ) x_3=A^{-1}x_2=\begin{pmatrix}
-2& 1&1 \\
5 & -1&-3\\
1&0&1
\end{pmatrix}\begin{pmatrix}
2 \\
2 \\
-1
\end{pmatrix}=\begin{pmatrix}
-3 \\
11 \\
1
\end{pmatrix} x 3 = A − 1 x 2 = ⎝ ⎛ − 2 5 1 1 − 1 0 1 − 3 1 ⎠ ⎞ ⎝ ⎛ 2 2 − 1 ⎠ ⎞ = ⎝ ⎛ − 3 11 1 ⎠ ⎞
x 4 = A − 1 x 3 = ( − 2 1 1 5 − 1 − 3 1 0 1 ) ( − 3 11 1 ) = ( 18 − 29 − 2 ) x_4=A^{-1}x_3=\begin{pmatrix}
-2& 1&1 \\
5 & -1&-3\\
1&0&1
\end{pmatrix}\begin{pmatrix}
-3 \\
11 \\
1
\end{pmatrix}=\begin{pmatrix}
18 \\
-29 \\
-2
\end{pmatrix} x 4 = A − 1 x 3 = ⎝ ⎛ − 2 5 1 1 − 1 0 1 − 3 1 ⎠ ⎞ ⎝ ⎛ − 3 11 1 ⎠ ⎞ = ⎝ ⎛ 18 − 29 − 2 ⎠ ⎞
x 5 = A − 1 x 4 = ( − 2 1 1 5 − 1 − 3 1 0 1 ) ( 18 − 29 − 2 ) = ( − 67 125 16 ) = 16 ( − 4.19 7.81 1 ) x_5=A^{-1}x_4=\begin{pmatrix}
-2& 1&1 \\
5 & -1&-3\\
1&0&1
\end{pmatrix}\begin{pmatrix}
18 \\
-29 \\
-2
\end{pmatrix}=\begin{pmatrix}
-67 \\
125 \\
16
\end{pmatrix}=16\begin{pmatrix}
-4.19 \\
7.81 \\
1
\end{pmatrix} x 5 = A − 1 x 4 = ⎝ ⎛ − 2 5 1 1 − 1 0 1 − 3 1 ⎠ ⎞ ⎝ ⎛ 18 − 29 − 2 ⎠ ⎞ = ⎝ ⎛ − 67 125 16 ⎠ ⎞ = 16 ⎝ ⎛ − 4.19 7.81 1 ⎠ ⎞
the corresponding eigenvector the smallest eigenvalue:
x = ( − 4.19 7.81 1 ) x=\begin{pmatrix}
-4.19 \\
7.81 \\
1
\end{pmatrix} x = ⎝ ⎛ − 4.19 7.81 1 ⎠ ⎞
A − 1 x = ( − 2 1 1 5 − 1 − 3 1 0 1 ) ( − 4.19 7.81 1 ) = ( 17.19 − 31.76 − 3.19 ) A^{-1}x=\begin{pmatrix}
-2& 1&1 \\
5 & -1&-3\\
1&0&1
\end{pmatrix}\begin{pmatrix}
-4.19 \\
7.81 \\
1
\end{pmatrix}=\begin{pmatrix}
17.19 \\
-31.76 \\
-3.19
\end{pmatrix} A − 1 x = ⎝ ⎛ − 2 5 1 1 − 1 0 1 − 3 1 ⎠ ⎞ ⎝ ⎛ − 4.19 7.81 1 ⎠ ⎞ = ⎝ ⎛ 17.19 − 31.76 − 3.19 ⎠ ⎞
the smallest eigenvalue:
λ = x ⋅ x A − 1 x ⋅ x = 26.37 − 323.26 = − 0.08 \lambda=\frac{x\cdot x}{A^{-1}x\cdot x}=\frac{26.37}{-323.26}=-0.08 λ = A − 1 x ⋅ x x ⋅ x = − 323.26 26.37 = − 0.08
Comments