Consider the linear eigenproblem Ax=λx for the matrix
D=[1 1 2
2 1 1
1 1 3 ]
1. Solve for the largest (in magnitude) eigenvalue of the matrix and the corresponding eigenvector by the power method with 𝑥(0)T=[1 0 0]
2. Solve for the smallest eigenvalue of the matrix and the corresponding eigenvector by the inverse power method using the matrix inverse. Use Gauss-Jordan elimination to find the matrix inverse.
1.
"x_1=Ax_0=\\begin{pmatrix}\n 1 & 1&2 \\\\\n 2 & 1&1\\\\\n1&1&3\n\\end{pmatrix}\\begin{pmatrix}\n 1 \\\\\n 0 \\\\\n0\n\\end{pmatrix}=\\begin{pmatrix}\n 1 \\\\\n 2 \\\\\n1\n\\end{pmatrix}"
"x_2=Ax_1=\\begin{pmatrix}\n 1 & 1&2 \\\\\n 2 & 1&1\\\\\n1&1&3\n\\end{pmatrix}\\begin{pmatrix}\n 1 \\\\\n 2 \\\\\n1\n\\end{pmatrix}=\\begin{pmatrix}\n 5 \\\\\n 5 \\\\\n6\n\\end{pmatrix}"
"x_3=Ax_2=\\begin{pmatrix}\n 1 & 1&2 \\\\\n 2 & 1&1\\\\\n1&1&3\n\\end{pmatrix}\\begin{pmatrix}\n 5 \\\\\n 5 \\\\\n6\n\\end{pmatrix}=\\begin{pmatrix}\n 22 \\\\\n 21 \\\\\n28\n\\end{pmatrix}"
"x_4=Ax_3=\\begin{pmatrix}\n 1 & 1&2 \\\\\n 2 & 1&1\\\\\n1&1&3\n\\end{pmatrix}\\begin{pmatrix}\n 22 \\\\\n 21 \\\\\n28\n\\end{pmatrix}=\\begin{pmatrix}\n 99 \\\\\n 93\\\\\n127\n\\end{pmatrix}"
"x_5=Ax_4=\\begin{pmatrix}\n 1 & 1&2 \\\\\n 2 & 1&1\\\\\n1&1&3\n\\end{pmatrix}\\begin{pmatrix}\n 99 \\\\\n 93 \\\\\n127\n\\end{pmatrix}=\\begin{pmatrix}\n 446 \\\\\n 418\\\\\n573\n\\end{pmatrix}=573\\begin{pmatrix}\n 0.78 \\\\\n 0.73\\\\\n1\n\\end{pmatrix}"
dominant eigenvector:
"x=\\begin{pmatrix}\n 0.78 \\\\\n 0.73\\\\\n1\n\\end{pmatrix}"
"Ax=\\begin{pmatrix}\n 1 & 1&2 \\\\\n 2 & 1&1\\\\\n1&1&3\n\\end{pmatrix}\\begin{pmatrix}\n 0.78 \\\\\n 0.73\\\\\n1\n\\end{pmatrix}=\\begin{pmatrix}\n 2.51 \\\\\n 4.75\\\\\n10.26\n\\end{pmatrix}"
"Ax\\cdot x=15.69"
"x\\cdot x=2.14"
dominant eigenvalue:
"\\lambda=\\frac{Ax\\cdot x}{x\\cdot x}=\\frac{15.69}{2.14}=7.33"
2.
"\\begin{pmatrix}\n 1 & 1&2 &|1&0&0\\\\\n 2 & 1&1&|0&1&0\\\\\n1&1&3&|0&0&1\n\\end{pmatrix}\\to\\begin{pmatrix}\n 1 & 0&0 &|-2&1&1\\\\\n 0 & 1&0&|5&-1&-3\\\\\n0&0&1&|-1&0&1\n\\end{pmatrix}"
"A^{-1}=\\begin{pmatrix}\n -2& 1&1 \\\\\n 5 & -1&-3\\\\\n1&0&1\n\\end{pmatrix}"
"x_1=A^{-1}x_0=\\begin{pmatrix}\n -2& 1&1 \\\\\n 5 & -1&-3\\\\\n1&0&1\n\\end{pmatrix}\\begin{pmatrix}\n 1 \\\\\n 0 \\\\\n0\n\\end{pmatrix}=\\begin{pmatrix}\n -2 \\\\\n 5 \\\\\n1\n\\end{pmatrix}"
"x_2=A^{-1}x_1=\\begin{pmatrix}\n -2& 1&1 \\\\\n 5 & -1&-3\\\\\n1&0&1\n\\end{pmatrix}\\begin{pmatrix}\n -2 \\\\\n 5 \\\\\n1\n\\end{pmatrix}=\\begin{pmatrix}\n 2 \\\\\n 2 \\\\\n-1\n\\end{pmatrix}"
"x_3=A^{-1}x_2=\\begin{pmatrix}\n -2& 1&1 \\\\\n 5 & -1&-3\\\\\n1&0&1\n\\end{pmatrix}\\begin{pmatrix}\n 2 \\\\\n 2 \\\\\n-1\n\\end{pmatrix}=\\begin{pmatrix}\n -3 \\\\\n 11 \\\\\n1\n\\end{pmatrix}"
"x_4=A^{-1}x_3=\\begin{pmatrix}\n -2& 1&1 \\\\\n 5 & -1&-3\\\\\n1&0&1\n\\end{pmatrix}\\begin{pmatrix}\n -3 \\\\\n 11 \\\\\n1\n\\end{pmatrix}=\\begin{pmatrix}\n 18 \\\\\n -29 \\\\\n-2\n\\end{pmatrix}"
"x_5=A^{-1}x_4=\\begin{pmatrix}\n -2& 1&1 \\\\\n 5 & -1&-3\\\\\n1&0&1\n\\end{pmatrix}\\begin{pmatrix}\n 18 \\\\\n -29 \\\\\n-2\n\\end{pmatrix}=\\begin{pmatrix}\n -67 \\\\\n 125 \\\\\n16\n\\end{pmatrix}=16\\begin{pmatrix}\n -4.19 \\\\\n 7.81 \\\\\n1\n\\end{pmatrix}"
the corresponding eigenvector the smallest eigenvalue:
"x=\\begin{pmatrix}\n -4.19 \\\\\n 7.81 \\\\\n1\n\\end{pmatrix}"
"A^{-1}x=\\begin{pmatrix}\n -2& 1&1 \\\\\n 5 & -1&-3\\\\\n1&0&1\n\\end{pmatrix}\\begin{pmatrix}\n -4.19 \\\\\n 7.81 \\\\\n1\n\\end{pmatrix}=\\begin{pmatrix}\n 17.19 \\\\\n -31.76 \\\\\n-3.19\n\\end{pmatrix}"
the smallest eigenvalue:
"\\lambda=\\frac{x\\cdot x}{A^{-1}x\\cdot x}=\\frac{26.37}{-323.26}=-0.08"
Comments
Leave a comment