1.
The dimension of a nonzero subspace S, is the number of vectors in any basis for S.
Consider the vectors:
v1=(1,1,0,0,0),v2=(0,0,3,1,1)
vectors v1 and v2 are in S, and are linearly independent. So, the dimension of S is 2.
2.
T(x,y,z)=x(1,1,1)+y(1,−1,0)+z(0,0,2)
basis: (1,1,1),(1,−1,0),(0,0,2)
3.
i)
let a(u1,v1,w1),b(u2,v2,w2) , then:
T1(a+b)=(u1+u2−(v1+v2)+2(w1+w2),5(v1+v2)−(w1+w2))=
=(u1−v1+2w1,5v1−w1)+(u2−v2+2w2,5v2−w2)=T1(a)+T1(b)
T1(ca)=T1(cu1,cv1,cw1)=(cu1−cv1+2cw1,5cv1−cw1)=
=c(u1−v1+2w1,5v1−w1)=cT1(a)
So, T1 is linear transformation.
ii)
∫a1+a2b1+b22p(x)dx=∫a1b12p(x)dx+∫a2b22p(x)dx
T2 is not linear transformation.
iii)
(u1+u2)p(u1+u2)+(u1+u2)=u1p(u1)+u1+u2p(u2)+u2
T2 is not linear transformation.
4.
u+v=0
u+2u=0
Ker(T)=(0,0)
5.
by the rank-nullity theorem:
6=dim(Ker(T))+dim(Im(T))
So, dim range T= 6-dim(Ker(T))=6-2=4
6.
∣∣5−λ−6−32−λ∣∣=0
10−7λ+λ2−18=0
λ1=27−49+32=−1
λ2=8
for λ1:
6x−3y=0
y=2x
x1=(12)
for λ2:
−3x−3y=0
x=−y
x2=(1−1)
P=(121−1)
Comments