1.
[ 1 2 1 1 1 0 − 1 1 0 1 4 1 ] \begin{bmatrix}
1 & 2 & 1 \\
1 & 1 & 0 \\
- 1 & 1 & 0 \\
1 & 4 & 1 \\
\end{bmatrix} ⎣ ⎡ 1 1 − 1 1 2 1 1 4 1 0 0 1 ⎦ ⎤ Find the reduced row echelon form
R 2 = R 2 − R 1 R_2=R_2-R_1 R 2 = R 2 − R 1
[ 1 2 1 0 − 1 − 1 − 1 1 0 1 4 1 ] \begin{bmatrix}
1 & 2 & 1 \\
0 & -1 & -1 \\
- 1 & 1 & 0 \\
1 & 4 & 1 \\
\end{bmatrix} ⎣ ⎡ 1 0 − 1 1 2 − 1 1 4 1 − 1 0 1 ⎦ ⎤ R 3 = R 3 + R 1 R_3=R_3+R_1 R 3 = R 3 + R 1
[ 1 2 1 0 − 1 − 1 0 3 1 1 4 1 ] \begin{bmatrix}
1 & 2 & 1 \\
0 & -1 & -1 \\
0 & 3 & 1 \\
1 & 4 & 1 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 1 2 − 1 3 4 1 − 1 1 1 ⎦ ⎤ R 4 = R 4 − R 1 R_4=R_4-R_1 R 4 = R 4 − R 1
[ 1 2 1 0 − 1 − 1 0 3 1 0 2 0 ] \begin{bmatrix}
1 & 2 & 1 \\
0 & -1 & -1 \\
0 & 3 & 1 \\
0 & 2 & 0 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 2 − 1 3 2 1 − 1 1 0 ⎦ ⎤ R 2 = − R 2 R_2=-R_2 R 2 = − R 2
[ 1 2 1 0 1 1 0 3 1 0 2 0 ] \begin{bmatrix}
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 3 & 1 \\
0 & 2 & 0 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 2 1 3 2 1 1 1 0 ⎦ ⎤ R 1 = R 1 − 2 R 2 R_1=R_1-2R_2 R 1 = R 1 − 2 R 2
[ 1 0 − 1 0 1 1 0 3 1 0 2 0 ] \begin{bmatrix}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 3 & 1 \\
0 & 2 & 0 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 0 1 3 2 − 1 1 1 0 ⎦ ⎤ R 3 = R 3 − 3 R 2 R_3=R_3-3R_2 R 3 = R 3 − 3 R 2
[ 1 0 − 1 0 1 1 0 0 − 2 0 2 0 ] \begin{bmatrix}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & -2 \\
0 & 2 & 0 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 0 1 0 2 − 1 1 − 2 0 ⎦ ⎤ R 4 = R 4 − 2 R 2 R_4=R_4-2R_2 R 4 = R 4 − 2 R 2
[ 1 0 − 1 0 1 1 0 0 − 2 0 0 − 2 ] \begin{bmatrix}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & -2 \\
0 & 0 & -2 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 0 1 0 0 − 1 1 − 2 − 2 ⎦ ⎤ R 3 = R 3 / ( − 2 ) R_3=R_3/(-2) R 3 = R 3 / ( − 2 )
[ 1 0 − 1 0 1 1 0 0 1 0 0 − 2 ] \begin{bmatrix}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 &1 \\
0 & 0 & -2 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 0 1 0 0 − 1 1 1 − 2 ⎦ ⎤ R 1 = R 1 + R 3 R_1=R_1+R_3 R 1 = R 1 + R 3
[ 1 0 0 0 1 1 0 0 1 0 0 − 2 ] \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 &1 \\
0 & 0 & -2 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 0 1 0 0 0 1 1 − 2 ⎦ ⎤ R 2 = R 2 − R 3 R_2=R_2-R_3 R 2 = R 2 − R 3
[ 1 0 0 0 1 0 0 0 1 0 0 − 2 ] \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 &1 \\
0 & 0 & -2 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 0 1 0 0 0 0 1 − 2 ⎦ ⎤ R 4 = R 4 + 2 R 3 R_4=R_4+2R_3 R 4 = R 4 + 2 R 3
[ 1 0 0 0 1 0 0 0 1 0 0 0 ] \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 &1 \\
0 & 0 & 0 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 0 1 0 0 0 0 1 0 ⎦ ⎤ To find the null space, solve the matrix equation
[ 1 0 0 0 1 0 0 0 1 0 0 0 ] [ x 1 x 2 x 3 ] = [ 0 0 0 0 ] \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 &1 \\
0 & 0 & 0 \\
\end{bmatrix}\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{bmatrix}=\begin{bmatrix}
0 \\
0 \\
0 \\
0\\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 0 1 0 0 0 0 1 0 ⎦ ⎤ ⎣ ⎡ x 1 x 2 x 3 ⎦ ⎤ = ⎣ ⎡ 0 0 0 0 ⎦ ⎤ Since this system has a unique solution, the null space contains only a zero vector.
The nullity of a matrix is the dimension of the basis for the null space.
Thus, the nullity of the matrix is 0.
The null space is [ 0 0 0 ] , \begin{bmatrix}
0 \\
0 \\
0 \\
\end{bmatrix}, ⎣ ⎡ 0 0 0 ⎦ ⎤ , it has no basis.
The nullity of the matrix is 0. 0. 0.
2.
A = [ 5 − 3 − 6 2 ] A=\begin{bmatrix}
5 &-3 \\
-6 & 2
\end{bmatrix} A = [ 5 − 6 − 3 2 ]
Find the eigenvalues and eigenvectors
A − λ I = [ 5 − λ − 3 − 6 2 − λ ] A-\lambda I=\begin{bmatrix}
5-\lambda &-3 \\
-6 & 2-\lambda
\end{bmatrix} A − λ I = [ 5 − λ − 6 − 3 2 − λ ]
det ( A − λ I ) = ∣ 5 − λ − 3 − 6 2 − λ ∣ \det (A-\lambda I)=\begin{vmatrix}
5-\lambda &-3 \\
-6 & 2-\lambda
\end{vmatrix} det ( A − λ I ) = ∣ ∣ 5 − λ − 6 − 3 2 − λ ∣ ∣
= ( 5 − λ ) ( 2 − λ ) − 18 = 10 − 7 λ + λ 2 − 18 =(5-\lambda)(2-\lambda)-18=10-7\lambda+\lambda^2-18 = ( 5 − λ ) ( 2 − λ ) − 18 = 10 − 7 λ + λ 2 − 18
= λ 2 − 7 λ − 8 =\lambda^2-7\lambda-8 = λ 2 − 7 λ − 8 The characteristic equation
λ 2 − 7 λ − 8 = 0 \lambda^2-7\lambda-8=0 λ 2 − 7 λ − 8 = 0
( λ + 1 ) ( λ − 8 ) = 0 (\lambda+1)(\lambda-8)=0 ( λ + 1 ) ( λ − 8 ) = 0 The roots are λ 1 = − 1 , λ 2 = 8. \lambda_1=-1, \lambda_2=8. λ 1 = − 1 , λ 2 = 8.
These are the eigenvalues.
Find the eigenvectors.
λ = − 1 \lambda=-1 λ = − 1
[ 5 − λ − 3 − 6 2 − λ ] = [ 6 − 3 − 6 3 ] \begin{bmatrix}
5-\lambda &-3 \\
-6 & 2-\lambda
\end{bmatrix}=\begin{bmatrix}
6 &-3 \\
-6 & 3
\end{bmatrix} [ 5 − λ − 6 − 3 2 − λ ] = [ 6 − 6 − 3 3 ] R 2 = R 2 + R 1 R_2=R_2+R_1 R 2 = R 2 + R 1
[ 6 − 3 0 0 ] \begin{bmatrix}
6 &-3 \\
0 & 0
\end{bmatrix} [ 6 0 − 3 0 ] R 1 = R 1 / 6 R_1=R_1/6 R 1 = R 1 /6
[ 1 − 1 / 2 0 0 ] \begin{bmatrix}
1 &-1/2 \\
0 & 0
\end{bmatrix} [ 1 0 − 1/2 0 ] Solve the matrix equation
[ 1 − 1 / 2 0 0 ] [ x 1 x 2 ] = [ 0 0 ] \begin{bmatrix}
1 &-1/2 \\
0 & 0
\end{bmatrix}\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}=\begin{bmatrix}
0 \\
0
\end{bmatrix} [ 1 0 − 1/2 0 ] [ x 1 x 2 ] = [ 0 0 ] If we take x 2 = t , x_2=t, x 2 = t , then x 1 = t / 2. x_1=t/2. x 1 = t /2.
Thus x ⃗ = [ t / 2 t ] = [ 1 2 ] s \vec x=\begin{bmatrix}
t/2 \\
t
\end{bmatrix}=\begin{bmatrix}
1 \\
2
\end{bmatrix}s x = [ t /2 t ] = [ 1 2 ] s
This is the eigenvector.
λ = 8 \lambda=8 λ = 8
[ 5 − λ − 3 − 6 2 − λ ] = [ − 3 − 3 − 6 − 6 ] \begin{bmatrix}
5-\lambda &-3 \\
-6 & 2-\lambda
\end{bmatrix}=\begin{bmatrix}
-3 &-3 \\
-6 & -6
\end{bmatrix} [ 5 − λ − 6 − 3 2 − λ ] = [ − 3 − 6 − 3 − 6 ] R 2 = R 2 − 2 R 1 R_2=R_2-2R_1 R 2 = R 2 − 2 R 1
[ − 3 − 3 0 0 ] \begin{bmatrix}
-3 &-3 \\
0 & 0
\end{bmatrix} [ − 3 0 − 3 0 ] R 1 = R 1 / ( − 3 ) R_1=R_1/(-3) R 1 = R 1 / ( − 3 )
[ 1 1 0 0 ] \begin{bmatrix}
1 &1 \\
0 & 0
\end{bmatrix} [ 1 0 1 0 ] Solve the matrix equation
[ 1 1 0 0 ] [ x 1 x 2 ] = [ 0 0 ] \begin{bmatrix}
1 &1 \\
0 & 0
\end{bmatrix}\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}=\begin{bmatrix}
0 \\
0
\end{bmatrix} [ 1 0 1 0 ] [ x 1 x 2 ] = [ 0 0 ] If we take x 2 = t , x_2=t, x 2 = t , then x 1 = − t . x_1=-t. x 1 = − t .
Thus x ⃗ = [ − t t ] = [ 1 − 1 ] s \vec x=\begin{bmatrix}
-t \\
t
\end{bmatrix}=\begin{bmatrix}
1 \\
-1
\end{bmatrix}s x = [ − t t ] = [ 1 − 1 ] s
This is the eigenvector.
Form the matrix P , P, P , whose column i i i is i i i -th eigenvector
P = [ 1 1 2 − 1 ] P=\begin{bmatrix}
1 & 1 \\
2 & -1
\end{bmatrix} P = [ 1 2 1 − 1 ] The matrix P P P that is diagonalizes A A A is
(i)
P = [ 1 1 2 − 1 ] P=\begin{bmatrix}
1 & 1 \\
2 & -1
\end{bmatrix} P = [ 1 2 1 − 1 ]
3.
1 u + 0 v = 0 0 u + 1 v = 0 1 u + 0 v = 0 2 u + 0 v = 0 \begin{matrix}
1u+0v=0 \\
0u+1v=0\\
1u+0v=0 \\
2u+0v=0\\
\end{matrix} 1 u + 0 v = 0 0 u + 1 v = 0 1 u + 0 v = 0 2 u + 0 v = 0
[ 1 0 0 1 1 0 2 0 ] \begin{bmatrix}
1 & 0 \\
0 & 1 \\
1 & 0 \\
2 & 0 \\
\end{bmatrix} ⎣ ⎡ 1 0 1 2 0 1 0 0 ⎦ ⎤ Find the reduced row echelon form
R 3 = R 3 − R 1 R_3=R_3-R_1 R 3 = R 3 − R 1
[ 1 0 0 1 0 0 2 0 ] \begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 0 \\
2 & 0 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 2 0 1 0 0 ⎦ ⎤ R 4 = R 4 − 2 R 1 R_4=R_4-2R_1 R 4 = R 4 − 2 R 1
[ 1 0 0 1 0 0 0 0 ] \begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 0 1 0 0 ⎦ ⎤ To find the null space, solve the matrix equation
[ 1 0 0 1 0 0 0 0 ] [ x 1 x 2 ] = [ 0 0 0 0 ] \begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix}=\begin{bmatrix}
0 \\
0 \\
0 \\
0\\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 0 1 0 0 ⎦ ⎤ [ x 1 x 2 ] = ⎣ ⎡ 0 0 0 0 ⎦ ⎤ Since this system has a unique solution, the null space contains only a zero vector.
The nullity of a matrix is the dimension of the basis for the null space.
Thus, the nullity of the matrix is 0.
The null space is [ 0 0 ] , \begin{bmatrix}
0 \\
0 \\
\end{bmatrix}, [ 0 0 ] , it has no basis.
The nullity of the matrix is 0. 0. 0. This is the dimension of the kernel of T . T. T .
Ker( T ) (T) ( T ) is zero.
Comments