A=⎝⎛10−2−5−223−535⎠⎞ Find the eigen values
A−λI=⎝⎛10−λ−2−5−22−λ3−535−λ⎠⎞
det(A−λI)=∣∣10−λ−2−5−22−λ3−535−λ∣∣
=(10−λ∣∣2−λ335−λ∣∣+2∣∣−2−535−λ∣∣
−5∣∣−2−52−λ3∣∣=(10−λ)(10−7λ+λ2−9)
+2(−10+2λ+15)−5(−6+10−5λ)
=10−70λ+10λ2−λ+7λ2−λ3+10+4λ
−20+25λ=−λ3+17λ2−42λ
=−λ(λ−3)(λ−14)
det(A−λI)=0=>−λ(λ−3)(λ−14)=0
The roots are λ1=14,λ2=3,λ3=0.
These are eigenvalues.
Find the eigenvectors
λ=14
A−λI=⎝⎛10−14−2−5−22−143−535−14⎠⎞
=⎝⎛−4−2−5−2−123−53−9⎠⎞ R2=R2−R1/2
⎝⎛−40−5−2−113−511/2−9⎠⎞ R3=R3−5R1/4
⎝⎛−400−2−1111/2−511/2−11/4⎠⎞ R3=R3+R2/2
⎝⎛−400−2−110−511/20⎠⎞
R2=R2/(−11)
⎝⎛−400−210−5−1/20⎠⎞R1=R1+2R2
⎝⎛−400010−6−1/20⎠⎞ R1=R1/(−4)
⎝⎛1000103/2−1/20⎠⎞ If we take v3=t, then v1=−23t,v2=21t.
The eigenvector is v=⎝⎛−3/21/21⎠⎞
λ=3
A−λI=⎝⎛10−3−2−5−22−33−535−3⎠⎞
=⎝⎛7−2−5−2−13−532⎠⎞ R2=R2+2R1/7
⎝⎛70−5−2−11/73−511/72⎠⎞ R3=R3+5R1/7
⎝⎛700−2−11/711/7−511/7−11/7⎠⎞ R3=R3+R2
⎝⎛700−2−11/70−511/70⎠⎞R2=−7R2/11
⎝⎛700−210−5−10⎠⎞R1=R1+2R2
⎝⎛700010−7−10⎠⎞ R1=R1/7
⎝⎛100010−1−10⎠⎞ If we take u3=t, then u1=t,u2=t.
The eigenvector is u=⎝⎛111⎠⎞
λ=0
A−λI=⎝⎛10−0−2−5−22−03−535−0⎠⎞
=⎝⎛10−2−5−223−535⎠⎞ R2=R2+R1/5
⎝⎛100−5−28/53−525⎠⎞ R3=R3+R1/2
⎝⎛1000−28/52−525/2⎠⎞ R3=R3−5R2/4
⎝⎛1000−28/50−520⎠⎞R2=5R2/8
⎝⎛1000−210−55/40⎠⎞R1=R1+2R2
⎝⎛1000010−5/25/40⎠⎞ R1=R1/10
⎝⎛100010−1/45/40⎠⎞ If we take w3=t, then w1=41t,w2=−45t.
The eigenvector is u=⎝⎛1/4−5/41⎠⎞
Form the matrix P
P=⎝⎛−3/21/211111/4−5/41⎠⎞ Form the diagonal matrix D
D=⎝⎛1400030000⎠⎞The matrices P and D are such that the initial matrix
A=⎝⎛10−2−5−223−535⎠⎞=PDP−1
P=⎝⎛−3/21/211111/4−5/41⎠⎞
D=⎝⎛1400030000⎠⎞
Comments