If 2 is one of the eigenvalue of
−2 2 −3
2 1 −6
−1 −2 0
then find the other two eigenvalues.
A=(−22−321−6−1−20)A=\begin{pmatrix} -2&2&-3 \\ 2&1&-6\\ -1&-2&0 \end{pmatrix}A=⎝⎛−22−121−2−3−60⎠⎞
∣A−Iλ∣=∣−2−λ2−321−λ−6−1−2−λ∣|A-I\lambda|=\begin{vmatrix} -2-\lambda& 2& -3\\ 2& 1-\lambda & -6\\ -1 & -2 & -\lambda \end{vmatrix}∣A−Iλ∣=∣∣−2−λ2−121−λ−2−3−6−λ∣∣
=−(λ−5)(λ+3)2=-(\lambda-5)(\lambda+3)^2=−(λ−5)(λ+3)2
Equate to zero.
⟹ λ=5,−3\implies \lambda=5, -3⟹λ=5,−3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments