Question #237087

Show that the set 𝑆 = {(1, 0, 1)(1,1, 0)(βˆ’1, 0, βˆ’1)} is linearly dependent in 𝑉3(𝑅)


1
Expert's answer
2021-09-14T11:25:00-0400

Let vβƒ—1=(101),vβƒ—2=(110)\vec v_1=\begin{pmatrix} 1\\ 0 \\ 1 \end{pmatrix}, \vec v_2=\begin{pmatrix} 1\\ 1 \\ 0 \end{pmatrix} and vβƒ—3=(βˆ’10βˆ’1).\vec v_3=\begin{pmatrix} -1\\ 0 \\ -1 \end{pmatrix}.

We have to determine whether or not we can find real numbers a1,a2,a3a_1, a_2, a_3 which are not all zero, such that


a1v⃗1+a2v⃗2+a3v⃗3=0⃗a_1\vec v_1+a_2\vec v_2+a_3\vec v_3=\vec 0

Substitute


a1(101)+a2(110)+a3(βˆ’10βˆ’1)=(000)a_1\begin{pmatrix} 1\\ 0 \\ 1 \end{pmatrix}+a_2\begin{pmatrix} 1\\ 1 \\ 0 \end{pmatrix}+a_3\begin{pmatrix} -1\\ 0 \\ -1 \end{pmatrix}=\begin{pmatrix} 0\\ 0 \\ 0 \end{pmatrix}

Augmented matrix


A=(11βˆ’10010010βˆ’10)A=\begin{pmatrix} 1 & 1 & -1 & & 0 \\ 0 & 1 & 0 & & 0 \\ 1 & 0 & -1 & & 0 \\ \end{pmatrix}

R3=R3βˆ’R1R_3=R_3-R_1


(11βˆ’1001000βˆ’100)\begin{pmatrix} 1 & 1 & -1 & & 0 \\ 0 & 1 & 0 & & 0 \\ 0 & -1 & 0 & & 0 \\ \end{pmatrix}

R1=R1βˆ’R2R_1=R_1-R_2


(10βˆ’1001000βˆ’100)\begin{pmatrix} 1 & 0 & -1 & & 0 \\ 0 & 1 & 0 & & 0 \\ 0 & -1 & 0 & & 0 \\ \end{pmatrix}

R3=R3+R2R_3=R_3+R_2


(10βˆ’1001000000)\begin{pmatrix} 1 & 0 & -1 & & 0 \\ 0 & 1 & 0 & & 0 \\ 0 & 0 & 0 & & 0 \\ \end{pmatrix}


If we take a3=1,a_3=1, then the solution is (a1,a2,a3)=(1,0,1)(a_1, a_2, a_3)=(1, 0, 1)

So this set of equations has a non–zero solution.

Therefore, set 𝑆={(1,0,1)(1,1,0)(βˆ’1,0,βˆ’1)}𝑆 = \{(1, 0, 1)(1,1, 0)(βˆ’1, 0, βˆ’1)\} is a linearly dependent in V3.V^3.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS