Let v1β=βββ101ββ ββ,v2β=βββ110ββ ββ and v3β=ββββ10β1ββ ββ.
We have to determine whether or not we can find real numbers a1β,a2β,a3β which are not all zero, such that
a1βv1β+a2βv2β+a3βv3β=0 Substitute
a1ββββ101ββ ββ+a2ββββ110ββ ββ+a3βββββ10β1ββ ββ=βββ000ββ ββ Augmented matrix
A=βββ101β110ββ10β1ββ000ββ ββ R3β=R3ββR1β
βββ100β11β1ββ100ββ000ββ ββ R1β=R1ββR2β
βββ100β01β1ββ100ββ000ββ ββ R3β=R3β+R2β
βββ100β010ββ100ββ000ββ ββ
If we take a3β=1, then the solution is (a1β,a2β,a3β)=(1,0,1)
So this set of equations has a nonβzero solution.
Therefore, set S={(1,0,1)(1,1,0)(β1,0,β1)} is a linearly dependent in V3.
Comments