Let v β 1 = ( 1 0 1 ) , v β 2 = ( 1 1 0 ) \vec v_1=\begin{pmatrix}
1\\
0 \\
1
\end{pmatrix}, \vec v_2=\begin{pmatrix}
1\\
1 \\
0
\end{pmatrix} v 1 β = β β β 1 0 1 β β β β , v 2 β = β β β 1 1 0 β β β β and v β 3 = ( β 1 0 β 1 ) . \vec v_3=\begin{pmatrix}
-1\\
0 \\
-1
\end{pmatrix}. v 3 β = β β β β 1 0 β 1 β β β β .
We have to determine whether or not we can find real numbers a 1 , a 2 , a 3 a_1, a_2, a_3 a 1 β , a 2 β , a 3 β which are not all zero, such that
a 1 v β 1 + a 2 v β 2 + a 3 v β 3 = 0 β a_1\vec v_1+a_2\vec v_2+a_3\vec v_3=\vec 0 a 1 β v 1 β + a 2 β v 2 β + a 3 β v 3 β = 0 Substitute
a 1 ( 1 0 1 ) + a 2 ( 1 1 0 ) + a 3 ( β 1 0 β 1 ) = ( 0 0 0 ) a_1\begin{pmatrix}
1\\
0 \\
1
\end{pmatrix}+a_2\begin{pmatrix}
1\\
1 \\
0
\end{pmatrix}+a_3\begin{pmatrix}
-1\\
0 \\
-1
\end{pmatrix}=\begin{pmatrix}
0\\
0 \\
0
\end{pmatrix} a 1 β β β β 1 0 1 β β β β + a 2 β β β β 1 1 0 β β β β + a 3 β β β β β 1 0 β 1 β β β β = β β β 0 0 0 β β β β Augmented matrix
A = ( 1 1 β 1 0 0 1 0 0 1 0 β 1 0 ) A=\begin{pmatrix}
1 & 1 & -1 & & 0 \\
0 & 1 & 0 & & 0 \\
1 & 0 & -1 & & 0 \\
\end{pmatrix} A = β β β 1 0 1 β 1 1 0 β β 1 0 β 1 β β 0 0 0 β β β β R 3 = R 3 β R 1 R_3=R_3-R_1 R 3 β = R 3 β β R 1 β
( 1 1 β 1 0 0 1 0 0 0 β 1 0 0 ) \begin{pmatrix}
1 & 1 & -1 & & 0 \\
0 & 1 & 0 & & 0 \\
0 & -1 & 0 & & 0 \\
\end{pmatrix} β β β 1 0 0 β 1 1 β 1 β β 1 0 0 β β 0 0 0 β β β β R 1 = R 1 β R 2 R_1=R_1-R_2 R 1 β = R 1 β β R 2 β
( 1 0 β 1 0 0 1 0 0 0 β 1 0 0 ) \begin{pmatrix}
1 & 0 & -1 & & 0 \\
0 & 1 & 0 & & 0 \\
0 & -1 & 0 & & 0 \\
\end{pmatrix} β β β 1 0 0 β 0 1 β 1 β β 1 0 0 β β 0 0 0 β β β β R 3 = R 3 + R 2 R_3=R_3+R_2 R 3 β = R 3 β + R 2 β
( 1 0 β 1 0 0 1 0 0 0 0 0 0 ) \begin{pmatrix}
1 & 0 & -1 & & 0 \\
0 & 1 & 0 & & 0 \\
0 & 0 & 0 & & 0 \\
\end{pmatrix} β β β 1 0 0 β 0 1 0 β β 1 0 0 β β 0 0 0 β β β β
If we take a 3 = 1 , a_3=1, a 3 β = 1 , then the solution is ( a 1 , a 2 , a 3 ) = ( 1 , 0 , 1 ) (a_1, a_2, a_3)=(1, 0, 1) ( a 1 β , a 2 β , a 3 β ) = ( 1 , 0 , 1 )
So this set of equations has a nonβzero solution.
Therefore, set π = { ( 1 , 0 , 1 ) ( 1 , 1 , 0 ) ( β 1 , 0 , β 1 ) } π = \{(1, 0, 1)(1,1, 0)(β1, 0, β1)\} S = {( 1 , 0 , 1 ) ( 1 , 1 , 0 ) ( β 1 , 0 , β 1 )} is a linearly dependent in V 3 . V^3. V 3 .
Comments