Question #226668

4x^2+3y^2+z^2-8xy-6yz+4zx


1
Expert's answer
2021-08-19T07:04:22-0400

Solution.

Write the given form as 4x24xy+2xz4xy+3y23yz+2zx3yz+z24x^2-4xy+2xz-4xy+3y^2-3yz+2zx-3yz+z^2

The corresponding matrix is A=(442433231)A=\begin{pmatrix} 4 & -4&2 \\ -4 & 3&-3\\ 2&-3&1 \end{pmatrix}

We write A=IAIA=IAI

We apply elementary operations on A and we apply the same row operations on the prefactor (R) and column operations on the post factor (C).

(442433231)=(100011001)A(100011001)\begin{pmatrix} 4 & -4&2 \\ -4 & 3&-3\\ 2&-3&1 \end{pmatrix}=\begin{pmatrix} 1 & 0&0 \\ 0&1&1\\ 0&0&1 \end{pmatrix}A\begin{pmatrix} 1 & 0&0 \\ 0&1&1\\ 0&0&1 \end{pmatrix}

Applying R2+R1,2R3R1,2R2R3,R12R3,R1+R2,R1/2,R2/2,R3/2,R2R3R_2+R_1, 2R_3-R_1, 2R_2-R_3,R_1-2R_3,R_1+R_2,R_1/2, R_2/\sqrt{2}, R_3/\sqrt{2},R_2\leftrightarrow R_3

and C2+C1,2C3C1,2C2C3,C12C3,C1+C2,C1/2,C2/2,C3/2,C2C3C_2+C_1, 2C_3-C_1, 2C_2-C_3, C_1-2C_3, C_1+C_2,C_1/2, C_2/\sqrt2,C_3/\sqrt2,C_2\leftrightarrow C_3

we get

(101010001)=(3131/202/23/22/22/2)A(31/23/2102/232/22/2)\begin{pmatrix} 1 & 0&1 \\ 0 & -1&0\\ 0&0&-1 \end{pmatrix}=\begin{pmatrix} 3& 1&-3 \\ -1/\sqrt{2}&0&2/\sqrt2\\ 3/\sqrt2&2/\sqrt2&-2/\sqrt2 \end{pmatrix}A\begin{pmatrix} 3& -1/\sqrt2&3/\sqrt2 \\ 1&0&2/\sqrt2\\ -3&2/\sqrt2&-2/\sqrt2 \end{pmatrix}

We have D=PTAP,D=P^TAP, where D=(101010001).D=\begin{pmatrix} 1 & 0&1 \\ 0 & -1&0\\ 0&0&-1 \end{pmatrix}.

P=(31/23/2102/232/22/2).P=\begin{pmatrix} 3& -1/\sqrt2&3/\sqrt2 \\ 1&0&2/\sqrt2\\ -3&2/\sqrt2&-2/\sqrt2 \end{pmatrix}.

The linear transformation is X=PY, or

(xyz)=(31/23/2102/232/22/2)(y1y2y3)\begin{pmatrix} x \\ y\\z \end{pmatrix}=\begin{pmatrix} 3& -1/\sqrt2&3/\sqrt2 \\ 1&0&2/\sqrt2\\ -3&2/\sqrt2&-2/\sqrt2 \end{pmatrix}\begin{pmatrix} y_1\\ y_2\\y_3 \end{pmatrix}

From here


x=3y11/2y2+3/2y3,y=y1+2y3,z=3y1+2y22y3.x=3y_1-1/\sqrt2 y_2+3/\sqrt2y_3,\newline y=y_1+\sqrt2 y_3,\newline z=-3y_1+\sqrt2 y_2-\sqrt2 y_3.


The canonical form is reduced to XTAX=YTDYX^TAX=Y^TDY .

We will have

(y1y2y3)(101010001)(y1y2y3)=y12y22y32.\begin{pmatrix} y_1&y_2&y_3 \\ \end{pmatrix}\begin{pmatrix} 1 & 0&1 \\ 0 & -1&0\\ 0&0&-1 \end{pmatrix}\begin{pmatrix} y_1 \\ y_2\\y_3 \end{pmatrix}=y_1^2-y_2^2-y_3^2.

Answer. The given quadratic form is reduced to normal form y12y22y32.y_1^2-y_2^2-y_3^2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS