i) Let f:R2 →R2 be defined by f(x,y)=(-y,-x)
Let β = { ( 1 , 0 ) = e 1 , ( 0 , 1 ) = e 2 } \beta =\{ (1,0)= e_1, (0,1)= e_2 \} β = {( 1 , 0 ) = e 1 , ( 0 , 1 ) = e 2 } be a standard ordered pair of R2
Then f(0,1) = (1,0)= 1(1,0)+0(0,1)
[ F ] β = [ 0 1 1 0 ] = A ( a y ) [F]_{\beta}=\begin{bmatrix}
0 & 1\\
1 & 0
\end{bmatrix}= A(ay) [ F ] β = [ 0 1 1 0 ] = A ( a y )
A ( x ) = ∣ A − x I ∣ = ∣ − x 1 1 − x ∣ = x 2 − 1 A(x)= |A-xI| = \begin{vmatrix}
-x & 1 \\
1 & -x
\end{vmatrix}= x^2-1 A ( x ) = ∣ A − x I ∣ = ∣ ∣ − x 1 1 − x ∣ ∣ = x 2 − 1 Hence linear
ii)
F ( x ) = A x A = ( 1 1 1 − 1 ) F(x)= Ax\\
A= \begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix} F ( x ) = A x A = ( 1 1 1 − 1 )
d o m = R 2 , c o − d o m = R 2 d i m d o m = 2 , d i m c o − d o m = 2 A x = 0 ⟹ ( 1 1 1 − 1 ) ( x y ) = ( 0 0 ) ⟹ ( x + y x − y ) = ( 0 0 ) x + y = 0 x − y = 0 ⟹ x = 0 ; y = 0 ∴ K e r n e l F = { ( 0 , 0 ) } N u l l i t y = 0 dom = R^2, co-dom = R^2\\
dim \space dom = 2, dim \space co-dom = 2\\
Ax= 0 \implies \begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix}\begin{pmatrix}
x \\
y
\end{pmatrix} = \begin{pmatrix}
0 \\
0
\end{pmatrix}\\
\implies \begin{pmatrix}
x+y\\
x-y
\end{pmatrix}= \begin{pmatrix}
0 \\
0
\end{pmatrix}\\
x+y=0\\
x-y=0\\
\implies x=0; y=0\\
\therefore Kernel \space F = \{(0,0)\} \\
Nullity =0\\ d o m = R 2 , co − d o m = R 2 d im d o m = 2 , d im co − d o m = 2 A x = 0 ⟹ ( 1 1 1 − 1 ) ( x y ) = ( 0 0 ) ⟹ ( x + y x − y ) = ( 0 0 ) x + y = 0 x − y = 0 ⟹ x = 0 ; y = 0 ∴ Ker n e l F = {( 0 , 0 )} N u ll i t y = 0
iii)
d o m = R 2 , c o − d o m = R 2 d i m d o m = 2 , d i m c o − d o m = 2 A x = 0 ⟹ ( 1 1 1 − 1 ) ( x y ) = ( 0 0 ) ⟹ ( x + y x − y ) = ( 0 0 ) x + y = 0 x − y = 0 ⟹ x = 0 ; y = 0 ∴ R a n g e F = R 2 ⟹ R a n g e = { ( 1 , 0 ) , ( 0 , 1 ) } dom = R^2, co-dom = R^2\\
dim \space dom = 2, dim \space co-dom = 2\\
Ax= 0 \implies \begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix}\begin{pmatrix}
x \\
y
\end{pmatrix} = \begin{pmatrix}
0 \\
0
\end{pmatrix}\\
\implies \begin{pmatrix}
x+y\\
x-y
\end{pmatrix}= \begin{pmatrix}
0 \\
0
\end{pmatrix}\\
x+y=0\\
x-y=0\\
\implies x=0; y=0\\
\therefore Range \space F = R^2\\
\implies Range = \{(1,0), (0,1)\} d o m = R 2 , co − d o m = R 2 d im d o m = 2 , d im co − d o m = 2 A x = 0 ⟹ ( 1 1 1 − 1 ) ( x y ) = ( 0 0 ) ⟹ ( x + y x − y ) = ( 0 0 ) x + y = 0 x − y = 0 ⟹ x = 0 ; y = 0 ∴ R an g e F = R 2 ⟹ R an g e = {( 1 , 0 ) , ( 0 , 1 )}
iv)
F o r y ϵ R For \space y \epsilon R F or yϵ R to find x ϵ R x \epsilon R x ϵ R such that
f ( x ) = y f ( x , y ) = ( − y , − x ) f(x)=y\\
f(x,y)=(-y,-x) f ( x ) = y f ( x , y ) = ( − y , − x )
This shows that f is invertible
Comments