Question #222331

Let f:R2→R2 be defined by f(x,y)=(-y,-x)

i) show that f is linear

ii)Determine a basis for the kernel of f and the nullity of f

iii) Determine the basis for the range of f and the rank of f

iv) Determine whether f is invertible or not



1
Expert's answer
2021-09-09T16:32:01-0400

i) Let f:R2→R2 be defined by f(x,y)=(-y,-x)

Let β={(1,0)=e1,(0,1)=e2}\beta =\{ (1,0)= e_1, (0,1)= e_2 \} be a standard ordered pair of R2

Then f(0,1) = (1,0)= 1(1,0)+0(0,1)

[F]β=[0110]=A(ay)[F]_{\beta}=\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}= A(ay)

A(x)=AxI=x11x=x21A(x)= |A-xI| = \begin{vmatrix} -x & 1 \\ 1 & -x \end{vmatrix}= x^2-1 Hence linear

ii)

F(x)=AxA=(1111)F(x)= Ax\\ A= \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}

dom=R2,codom=R2dim dom=2,dim codom=2Ax=0    (1111)(xy)=(00)    (x+yxy)=(00)x+y=0xy=0    x=0;y=0Kernel F={(0,0)}Nullity=0dom = R^2, co-dom = R^2\\ dim \space dom = 2, dim \space co-dom = 2\\ Ax= 0 \implies \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}\\ \implies \begin{pmatrix} x+y\\ x-y \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \end{pmatrix}\\ x+y=0\\ x-y=0\\ \implies x=0; y=0\\ \therefore Kernel \space F = \{(0,0)\} \\ Nullity =0\\


iii)

dom=R2,codom=R2dim dom=2,dim codom=2Ax=0    (1111)(xy)=(00)    (x+yxy)=(00)x+y=0xy=0    x=0;y=0Range F=R2    Range={(1,0),(0,1)}dom = R^2, co-dom = R^2\\ dim \space dom = 2, dim \space co-dom = 2\\ Ax= 0 \implies \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}\\ \implies \begin{pmatrix} x+y\\ x-y \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \end{pmatrix}\\ x+y=0\\ x-y=0\\ \implies x=0; y=0\\ \therefore Range \space F = R^2\\ \implies Range = \{(1,0), (0,1)\}


iv)

For yϵRFor \space y \epsilon R to find xϵRx \epsilon R such that

f(x)=yf(x,y)=(y,x)f(x)=y\\ f(x,y)=(-y,-x)

This shows that f is invertible


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS