i) Let f:R2→R2 be defined by f(x,y)=(-y,-x)
Let β={(1,0)=e1,(0,1)=e2} be a standard ordered pair of R2
Then f(0,1) = (1,0)= 1(1,0)+0(0,1)
[F]β=[0110]=A(ay)
A(x)=∣A−xI∣=∣∣−x11−x∣∣=x2−1 Hence linear
ii)
F(x)=AxA=(111−1)
dom=R2,co−dom=R2dim dom=2,dim co−dom=2Ax=0⟹(111−1)(xy)=(00)⟹(x+yx−y)=(00)x+y=0x−y=0⟹x=0;y=0∴Kernel F={(0,0)}Nullity=0
iii)
dom=R2,co−dom=R2dim dom=2,dim co−dom=2Ax=0⟹(111−1)(xy)=(00)⟹(x+yx−y)=(00)x+y=0x−y=0⟹x=0;y=0∴Range F=R2⟹Range={(1,0),(0,1)}
iv)
For yϵR to find xϵR such that
f(x)=yf(x,y)=(−y,−x)
This shows that f is invertible
Comments