Question #222325

Determine the dimension and hence the basis for the vector space spanned by the vectors (-1,1,3),(2,3,4),(3,0,-5) and (-2,1,0)


1
Expert's answer
2021-08-16T15:25:17-0400
(123213013450)\begin{pmatrix} -1 & 2 & 3 & -2 \\ 1 & 3 & 0 & 1 \\ 3 & 4 & -5 & 0 \\ \end{pmatrix}

R1=R1R_1=-R_1


(123213013450)\begin{pmatrix} 1 & -2 & -3 & 2 \\ 1 & 3 & 0 & 1 \\ 3 & 4 & -5 & 0 \\ \end{pmatrix}

R2=R2R1R_2=R_2-R_1


(123205313450)\begin{pmatrix} 1 & -2 & -3 & 2 \\ 0 & 5 & 3 & -1 \\ 3 & 4 & -5 & 0 \\ \end{pmatrix}

R3=R33R1R_3=R_3-3R_1


(1232053101046)\begin{pmatrix} 1 & -2 & -3 & 2 \\ 0 & 5 & 3 & -1 \\ 0 & 10 & 4 & -6 \\ \end{pmatrix}

R2=R2/5R_2=R_2/5


(1232013/51/501046)\begin{pmatrix} 1 & -2 & -3 & 2 \\ 0 & 1 & 3/5 & -1/5 \\ 0 & 10 & 4 & -6 \\ \end{pmatrix}

R1=R1+2R2R_1=R_1+2R_2


(109/58/5013/51/501046)\begin{pmatrix} 1 & 0 & -9/5 & 8/5 \\ 0 & 1 & 3/5 & -1/5 \\ 0 & 10 & 4 & -6 \\ \end{pmatrix}

R3=R310R2R_3=R_3-10R_2


(109/58/5013/51/50024)\begin{pmatrix} 1 & 0 & -9/5 & 8/5 \\ 0 & 1 & 3/5 & -1/5 \\ 0 & 0 & -2 & -4 \\ \end{pmatrix}

R3=R3/(2)R_3=R_3/(-2)


(109/58/5013/51/50012)\begin{pmatrix} 1 & 0 & -9/5 & 8/5 \\ 0 & 1 & 3/5 & -1/5 \\ 0 & 0 & 1 & 2 \\ \end{pmatrix}

R1=R1+9R3/5R_1=R_1+9R_3/5


(10026/5013/51/50012)\begin{pmatrix} 1 & 0 & 0 & 26/5 \\ 0 & 1 & 3/5 & -1/5 \\ 0 & 0 & 1 & 2 \\ \end{pmatrix}

R2=R23R3/5R_2=R_2-3R_3/5

(10026/50107/50012)\begin{pmatrix} 1 & 0 & 0 & 26/5 \\ 0 & 1 & 0 & -7/5 \\ 0 & 0 & 1 & 2 \\ \end{pmatrix}

rankA=3=>rank A=3=> the dimension is 3.


the basis for the vector space is [113],[234],[305]\begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix},\begin{bmatrix} 3 \\ 0 \\ -5 \end{bmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS