Question #222320

Define the linear function f:R3→R2 by f(x,y,z)=(x-z,y-x,z-y).Find

i) the kernel of f

ii)the nulllity of f

iii)the rank of f and a basis for the range of f


1
Expert's answer
2021-08-17T08:34:19-0400

Consider the linear function f:R3R3, f(x,y,z)=(xz,yx,zy).f:\R^3→\R^3,\ f(x,y,z)=(x-z,y-x,z-y). .


i) Let us find the kernel of f:f:

kerf={(x,y,z)R3, f(x,y,z)=(0,0,0)}={(x,y,z)R3, (xz,yx,zy)=(0,0,0)}={(x,y,z)R3, xz=0,yx=0,zy=0}={(x,y,z)R3, x=y=z}={(x,x,x), xR}={x(1,1,1), xR}ker f=\{(x,y,z)\in R^3,\ f(x,y,z)=(0,0,0)\}\\ =\{(x,y,z)\in R^3,\ (x-z,y-x,z-y)=(0,0,0)\}\\ =\{(x,y,z)\in R^3,\ x-z=0,y-x=0,z-y=0\}\\ =\{(x,y,z)\in R^3,\ x=y=z\}\\ =\{(x,x,x),\ x\in \R\}\\ =\{x(1,1,1),\ x\in \R\}


ii) It follows that the vector (1,1,1)(1,1,1) form a basis of the kernel, and hence the nulllity of ff is 1.


iii) Let the vector (a,b,c)(a,b,c) belongs to the range of f.f. Then f(x,y,z)=(xz,yx,zy)=(a,b,c)f(x,y,z)=(x-z,y-x,z-y)=(a,b,c) for some (x,y,z)R3.(x,y,z)\in\R^3. It follows that xz=a,yx=b,zy=c.x-z=a,y-x=b,z-y=c. Then (xz)+(yx)=a+b,zy=c,(x-z)+(y-x)=a+b,z-y=c, that is z+y=a+b,zy=c.-z+y=a+b,z-y=c. We conclude that a+b=c.a+b=-c. Since (a,b,c)=(a,b,(a+b))=a(1,0,1)+b(0,1,1),(a,b,c)=(a,b,-(a+b))=a(1,0,-1)+b(0,1,-1), and by the rank-nullity theorem rankf=31=2,rank f=3-1=2, we conclude that {(1,0,1),(0,1,1)}\{(1,0,-1),(0,1,-1)\} is a basis of for the range ff.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS