Find the matrix representation A of the linear function: R2→R3 where
f(x,y)=(5x-y,2x-y,-x+2y) with respect to the standard bases for R2 and R3
f(x,y)=(5x−y,2x−y,−x+2y)Canonical basis of R3 is{(1,0,0),(0,1,0),(0,0,1)}[5−12−1−12][xy]=[5x−y2x−y−x+2y]f(x,y)=(5x-y,2x-y,-x+2y)\\ Canonical\ basis\ of\ \R^3\ is\\ \{(1,0,0),(0,1,0),(0,0,1)\}\\ \begin{bmatrix} 5 & -1 \\ 2 & -1\\ -1 & 2 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix}=\begin{bmatrix} 5x-y\\ 2x-y\\ -x+2y \end{bmatrix}f(x,y)=(5x−y,2x−y,−x+2y)Canonical basis of R3 is{(1,0,0),(0,1,0),(0,0,1)}⎣⎡52−1−1−12⎦⎤[xy]=⎣⎡5x−y2x−y−x+2y⎦⎤
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments