Question #222319

Find the matrix representation A of the linear function: R2→R3 where

f(x,y)=(5x-y,2x-y,-x+2y) with respect to the standard bases for R2 and R3

1
Expert's answer
2021-08-23T04:49:53-0400

f(x,y)=(5xy,2xy,x+2y)Canonical basis of R3 is{(1,0,0),(0,1,0),(0,0,1)}[512112][xy]=[5xy2xyx+2y]f(x,y)=(5x-y,2x-y,-x+2y)\\ Canonical\ basis\ of\ \R^3\ is\\ \{(1,0,0),(0,1,0),(0,0,1)\}\\ \begin{bmatrix} 5 & -1 \\ 2 & -1\\ -1 & 2 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix}=\begin{bmatrix} 5x-y\\ 2x-y\\ -x+2y \end{bmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS