Question #222317

Consider the set B={(1,1,1),(0,2,2),(0,0,3)}.show that B

I) spans R3

ii)is linearly independent

iii)is a basis for R3

1
Expert's answer
2021-08-15T18:16:29-0400

i)


(100120123)\begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 3 \\ \end{pmatrix}

R2=R2R1R_2=R_2-R_1


(100020123)\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 2 & 3 \\ \end{pmatrix}

R3=R3R1R_3=R_3-R_1


(100020023)\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 3 \\ \end{pmatrix}

R2=R2/2R_2=R_2/2


(100010023)\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 3 \\ \end{pmatrix}

R3=R32R2R_3=R_3-2R_2


(100010003)\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \\ \end{pmatrix}

R3=R3/3R_3=R_3/3


(100010001)\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}

The rank of the matrix is 3, so the given vectors span a subspace of dimension 3, hence they span R3.


ii)


a(111)+b(022)+c(003)=(000)a\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}+b\begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}+c\begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}

(100012001230)(100001000010)\begin{pmatrix} 1 & 0 & 0 & & 0 \\ 1 & 2 & 0 & & 0 \\ 1 & 2 & 3 & & 0 \\ \end{pmatrix}\to\begin{pmatrix} 1 & 0 & 0 & & 0 \\ 0 & 1 & 0 & & 0 \\ 0 & 0 & 1 & & 0 \\ \end{pmatrix}

a=b=c=0a=b=c=0

The given vectors are linearly independent.


iii) A subset SS of a vector space VV  is called a basis if

1. SS is a spanning set

2. SS is linearly independent.

Therefore the set B={(1,1,1),(0,2,2),(0,0,3)}B=\{{(1,1,1),(0,2,2),(0,0,3)\}} is a basis for R3.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS