i)
⎝⎛111022003⎠⎞ R2=R2−R1
⎝⎛101022003⎠⎞ R3=R3−R1
⎝⎛100022003⎠⎞ R2=R2/2
⎝⎛100012003⎠⎞ R3=R3−2R2
⎝⎛100010003⎠⎞ R3=R3/3
⎝⎛100010001⎠⎞The rank of the matrix is 3, so the given vectors span a subspace of dimension 3, hence they span R3.
ii)
a⎝⎛111⎠⎞+b⎝⎛022⎠⎞+c⎝⎛003⎠⎞=⎝⎛000⎠⎞
⎝⎛111022003000⎠⎞→⎝⎛100010001000⎠⎞ a=b=c=0
The given vectors are linearly independent.
iii) A subset S of a vector space V is called a basis if
1. S is a spanning set
2. S is linearly independent.
Therefore the set B={(1,1,1),(0,2,2),(0,0,3)} is a basis for R3.
Comments