Any inner product induces a norm given by
∥ v ∥ = ⟨ v , v ⟩ \|v\|=\sqrt{\langle v, v\rangle} ∥ v ∥ = ⟨ v , v ⟩ Proof. The axioms for norms mostly follow directly from those for inner products.
If u , v ∈ V u, v ∈ V u , v ∈ V and α ∈ F , α ∈ F, α ∈ F , then
(i)
∥ v ∥ = ⟨ v , v ⟩ ≥ 0 , \|v\|=\sqrt{\langle v, v\rangle}\geq0, ∥ v ∥ = ⟨ v , v ⟩ ≥ 0 , since ⟨ v , v ⟩ ≥ 0 \langle v, v\rangle\geq0 ⟨ v , v ⟩ ≥ 0 with equality if and only if v = 0. v = 0. v = 0.
(ii)
∥ α v ∥ = ⟨ α v , α v ⟩ = ∣ α ∣ 2 ⟨ v , v ⟩ \|\alpha v\|=\sqrt{\langle \alpha v,\alpha v\rangle}=\sqrt{|\alpha|^2\langle v, v\rangle} ∥ αv ∥ = ⟨ αv , αv ⟩ = ∣ α ∣ 2 ⟨ v , v ⟩
= ∣ α ∣ ⟨ v , v ⟩ = ∣ α ∣ ∥ a v ∥ =|\alpha|\sqrt{\langle v, v\rangle}=|\alpha|\|a v\| = ∣ α ∣ ⟨ v , v ⟩ = ∣ α ∣∥ a v ∥ (iii) The triangle inequality
Cauchy-Schwarz inequality
If V V V is an inner product space, then
∣ ⟨ u , u ⟩ ∣ ≤ ∥ u ∥ ∥ v ∥ |\langle u, u\rangle|\leq\|u\|\|v\| ∣ ⟨ u , u ⟩ ∣ ≤ ∥ u ∥∥ v ∥ for all u , v ∈ V . u, v ∈ V . u , v ∈ V . Equality holds exactly when u u u and v v v are linearly dependent.
Using the Cauchy-Schwarz inequality,
∥ u + v ∥ 2 = ⟨ u + v , u + v ⟩ \|u+ v\|^2=\langle u+v, u+v\rangle ∥ u + v ∥ 2 = ⟨ u + v , u + v ⟩
= ⟨ u , u ⟩ + ⟨ u , v ⟩ + ⟨ v , u ⟩ + ⟨ v , v ⟩ =\langle u, u\rangle+\langle u, v\rangle+\langle v, u\rangle+\langle v, v\rangle = ⟨ u , u ⟩ + ⟨ u , v ⟩ + ⟨ v , u ⟩ + ⟨ v , v ⟩
= ∥ u ∥ 2 + ⟨ u , v ⟩ + ⟨ u , v ⟩ ‾ + ∥ v ∥ 2 =\|u\|^2+\langle u, v\rangle+\overline{\langle u, v\rangle}+\|v\|^2 = ∥ u ∥ 2 + ⟨ u , v ⟩ + ⟨ u , v ⟩ + ∥ v ∥ 2
= ∥ u ∥ 2 + 2 R e ⟨ u , v ⟩ + ∥ v ∥ 2 =\|u\|^2+2Re\langle u, v\rangle+\|v\|^2 = ∥ u ∥ 2 + 2 R e ⟨ u , v ⟩ + ∥ v ∥ 2
≤ ∥ u ∥ 2 + 2 ∣ ⟨ u , v ⟩ ∣ + ∥ v ∥ 2 \leq\|u\|^2+2|\langle u, v\rangle|+\|v\|^2 ≤ ∥ u ∥ 2 + 2∣ ⟨ u , v ⟩ ∣ + ∥ v ∥ 2
≤ ∥ u ∥ 2 + 2 ∥ u ∥ ∥ v ∥ + ∥ v ∥ 2 \leq\|u\|^2+2\|u\|\|v\|+\|v\|^2 ≤ ∥ u ∥ 2 + 2∥ u ∥∥ v ∥ + ∥ v ∥ 2
= ( ∥ u ∥ + ∥ v ∥ ) 2 =(\|u\|+\|v\|)^2 = ( ∥ u ∥ + ∥ v ∥ ) 2 Taking square roots yields
∥ u + v ∥ ≤ ∥ u ∥ + ∥ v ∥ , \|u+ v\|\leq\|u\|+\|v\|, ∥ u + v ∥ ≤ ∥ u ∥ + ∥ v ∥ , since both sides are nonnegative.
Therefore ∥ v ∥ = ⟨ v , v ⟩ \|v\|=\sqrt{\langle v, v\rangle} ∥ v ∥ = ⟨ v , v ⟩ is a Norm.
Comments