Answer to Question #219572 in Linear Algebra for dan

Question #219572

. let t:r^2->r^2 be a linear transformation for which ( 1,2)= (2,3 ) and ( 0,1)= (1,4 ). find a formula for t.


1
Expert's answer
2021-09-07T12:17:25-0400

Solution.

T(1,2)=(2,3);T(0,1)=(1,4).T(1,2)=(2,3); T(0,1)=(1,4).

Let (a, b) ∈ R2 . Since{(1,2),(0,1){(1, 2),(0, 1)}} is a basis of R2 we determine c1, c2 such that

(a,b)=c1(1,2)+c2(0,1)(a, b) = c_1(1, 2) + c_2(0, 1).

That is

a=c1;b=2c1+c2.a = c_1; b = 2c_1 + c_2.

Solving this system, we see that c1=ac_1 = a and c2=b2c1=b2a.c_2 = b − 2c_1 = b − 2a.

Therefore(a,b)=a(1,2)+(b2a)(0,1).(a, b) = a(1, 2) + (b − 2a)(0, 1).

It follows that T(a,b)=aT(1,2)+(b2a)T(0,1)=a(2,3)+(b2a)(1,4)=(2a,3a)+(b2a,4b8a)=(b,4b5a).T(a, b) = aT(1, 2) + (b − 2a)T(0, 1) = a(2, 3) + (b − 2a)(1,4) = (2a, 3a) + (b − 2a, 4b − 8a) = (b, 4b-5a).

Answer: T(a,b)=(b,4b5a).T(a,b)=(b,4b-5a).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment