dimR(V)=8dimR(U)=4dimR(W)=5dimR(V)=8\\ dimR(U)= 4\\ dimR(W)= 5dimR(V)=8dimR(U)=4dimR(W)=5
We know that
max{0,dimR(U)+dimR(W)−dimR(V)}≤≤dim R(UnW)≤min(dimR(U),dimR(W)),max{0,4+5−8}≤dimR(UnW)≤min(4,5),max{0,1}≤dimR(UnW)≤min(4,5),1≤dimR(UnW)≤4max \{0, dimR(U) +dimR(W) -dimR(V)\}\leq \\ \leq dim \space R (UnW) ≤ min (dimR(U) ,dimR(W)),\\ max \{0, 4 +5 -8\}≤dimR (UnW) ≤min(4,5),\\ max \{0, 1\}≤dimR (UnW) ≤min(4,5),\\ 1≤ dimR (UnW) ≤4\\max{0,dimR(U)+dimR(W)−dimR(V)}≤≤dim R(UnW)≤min(dimR(U),dimR(W)),max{0,4+5−8}≤dimR(UnW)≤min(4,5),max{0,1}≤dimR(UnW)≤min(4,5),1≤dimR(UnW)≤4
Hence , the possible values of dimR(UnW) is 1, 2, 3, 4.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments