Question #211217

Let T : R3 → R3 be defined by T (x1

, x2

, x3

) = (x1

, x2

,−x1 − x2

). Find a

matrix which represents T


1
Expert's answer
2021-06-28T16:37:12-0400

Let T:R3R3T:R^3\to R^3 be defined by T(x1,x2,x3)=(x1,x2,x1x2)T(x_1, x_2, x_3)=(x_1, x_2, -x_1-x_2)



T([x1x2x3])=[x1x2x1x2]T\begin{pmatrix} \begin{bmatrix} x_1\\ x_2 \\ x_3 \end{bmatrix} \end{pmatrix}=\begin{bmatrix} x_1 \\ x_2\\ -x_1-x_2 \end{bmatrix}

T([100])=[101]T\begin{pmatrix} \begin{bmatrix} 1\\ 0 \\ 0 \end{bmatrix} \end{pmatrix}=\begin{bmatrix} 1 \\ 0\\ -1 \end{bmatrix}

T([010])=[011]T\begin{pmatrix} \begin{bmatrix} 0\\ 1 \\ 0 \end{bmatrix} \end{pmatrix}=\begin{bmatrix} 0 \\ 1\\ -1 \end{bmatrix}


T([001])=[000]T\begin{pmatrix} \begin{bmatrix} 0\\ 0 \\ 1 \end{bmatrix} \end{pmatrix}=\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}

Using these as our columns, the standard matrix for TT is:


A=[100010110]A=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 0 \\ \end{bmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS