Let T : R 3 → R 3 T:R^3\to R^3 T : R 3 → R 3 be defined by T ( x 1 , x 2 , x 3 ) = ( x 1 , x 2 , − x 1 − x 2 ) T(x_1, x_2, x_3)=(x_1, x_2, -x_1-x_2) T ( x 1 , x 2 , x 3 ) = ( x 1 , x 2 , − x 1 − x 2 )
T ( [ x 1 x 2 x 3 ] ) = [ x 1 x 2 − x 1 − x 2 ] T\begin{pmatrix}
\begin{bmatrix}
x_1\\
x_2 \\
x_3
\end{bmatrix}
\end{pmatrix}=\begin{bmatrix}
x_1 \\
x_2\\
-x_1-x_2
\end{bmatrix} T ⎝ ⎛ ⎣ ⎡ x 1 x 2 x 3 ⎦ ⎤ ⎠ ⎞ = ⎣ ⎡ x 1 x 2 − x 1 − x 2 ⎦ ⎤
T ( [ 1 0 0 ] ) = [ 1 0 − 1 ] T\begin{pmatrix}
\begin{bmatrix}
1\\
0 \\
0
\end{bmatrix}
\end{pmatrix}=\begin{bmatrix}
1 \\
0\\
-1
\end{bmatrix} T ⎝ ⎛ ⎣ ⎡ 1 0 0 ⎦ ⎤ ⎠ ⎞ = ⎣ ⎡ 1 0 − 1 ⎦ ⎤
T ( [ 0 1 0 ] ) = [ 0 1 − 1 ] T\begin{pmatrix}
\begin{bmatrix}
0\\
1 \\
0
\end{bmatrix}
\end{pmatrix}=\begin{bmatrix}
0 \\
1\\
-1
\end{bmatrix} T ⎝ ⎛ ⎣ ⎡ 0 1 0 ⎦ ⎤ ⎠ ⎞ = ⎣ ⎡ 0 1 − 1 ⎦ ⎤
T ( [ 0 0 1 ] ) = [ 0 0 0 ] T\begin{pmatrix}
\begin{bmatrix}
0\\
0 \\
1
\end{bmatrix}
\end{pmatrix}=\begin{bmatrix}
0\\
0\\
0
\end{bmatrix} T ⎝ ⎛ ⎣ ⎡ 0 0 1 ⎦ ⎤ ⎠ ⎞ = ⎣ ⎡ 0 0 0 ⎦ ⎤ Using these as our columns, the standard matrix for T T T is:
A = [ 1 0 0 0 1 0 − 1 − 1 0 ] A=\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & -1 & 0 \\
\end{bmatrix} A = ⎣ ⎡ 1 0 − 1 0 1 − 1 0 0 0 ⎦ ⎤
Comments