Question #209155

Verify rank nullity theorem for the linear 

transformation T : R

3 → R

3

 defined by : 9 

T(x, y, z) = (x + 2y – z, y + z, x + y – 2z)


1
Expert's answer
2021-06-24T11:51:40-0400

T:R3R3T:\mathbb{R}^3\rightarrow \mathbb{R}^3 , T(x,y,z)=(x+2yz, y+z, x+y2z)T(x,y,z)=(x+2y-z,\ y+z,\ x+y-2z)

Let us find the dimension of the image:

T(x,y,z)=(121011112)(xyz)=x(101)+y(211)+z(112)T(x,y,z)=\begin{pmatrix} 1 & 2&-1 \\ 0 & 1&1\\ 1&1&-2 \end{pmatrix}\begin{pmatrix} x \\ y \\ z \end{pmatrix}=x\begin{pmatrix} 1\\0\\1 \end{pmatrix}+ y\begin{pmatrix} 2\\1\\1 \end{pmatrix}+z\begin{pmatrix} -1\\1\\-2 \end{pmatrix}

Im T=Span{(101),(211),(112)}=Span{(101),(211),(211)3(101)}=Span{(101),(211)}\text{Im} \ T=\text{Span}\begin{Bmatrix} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\1\\1 \end{pmatrix}, \begin{pmatrix} - 1\\1\\-2 \end{pmatrix} \end{Bmatrix}= \text{Span}\begin{Bmatrix} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\1\\1 \end{pmatrix}-3 \begin{pmatrix} 1 \\0\\ 1 \end{pmatrix} \end{Bmatrix}= \text{Span}\begin{Bmatrix} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix}2\\1\\1 \end{pmatrix} \end{Bmatrix}

dim Im T=2\text{dim } \text{Im} \ T=2


Now we find the dimension of the kernel:

T(x,y,z)=(x+2yz, y+z, x+y2z)=(0,0,0)T(x,y,z)=(x+2y-z,\ y+z,\ x+y-2z)=(0,0,0)

We have that y=z,  x=z2y=3zy=-z, \ \ x=z-2y=3z .

So, Ker T=Span{(311)}\text{Ker} \ T=\text{Span} \begin{Bmatrix} \begin{pmatrix} 3\\-1\\1\end{pmatrix} \end{Bmatrix}

dim Ker T=1\text{dim Ker}\ T=1


The rank-nullity theorem:

The dimension of the kernel plus the dimension of the image equals the dimension of the domain.

In this case we have dim Ker T+dim Im T=dim R3\text{dim Ker} \ T+\text{dim Im}\ T=\text{dim} \ \mathbb{R}^3 and 1+2=31+2=3 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS