T:R3→R3 , T(x,y,z)=(x+2y−z, y+z, x+y−2z)
Let us find the dimension of the image:
T(x,y,z)=⎝⎛101211−11−2⎠⎞⎝⎛xyz⎠⎞=x⎝⎛101⎠⎞+y⎝⎛211⎠⎞+z⎝⎛−11−2⎠⎞
Im T=Span⎩⎨⎧⎝⎛101⎠⎞,⎝⎛211⎠⎞,⎝⎛−11−2⎠⎞⎭⎬⎫=Span⎩⎨⎧⎝⎛101⎠⎞,⎝⎛211⎠⎞,⎝⎛211⎠⎞−3⎝⎛101⎠⎞⎭⎬⎫=Span⎩⎨⎧⎝⎛101⎠⎞,⎝⎛211⎠⎞⎭⎬⎫
dim Im T=2
Now we find the dimension of the kernel:
T(x,y,z)=(x+2y−z, y+z, x+y−2z)=(0,0,0)
We have that y=−z, x=z−2y=3z .
So, Ker T=Span⎩⎨⎧⎝⎛3−11⎠⎞⎭⎬⎫
dim Ker T=1
The rank-nullity theorem:
The dimension of the kernel plus the dimension of the image equals the dimension of the domain.
In this case we have dim Ker T+dim Im T=dim R3 and 1+2=3 .
Comments