T : R 3 → R 3 T:\mathbb{R}^3\rightarrow \mathbb{R}^3 T : R 3 → R 3 , T ( x , y , z ) = ( x + 2 y − z , y + z , x + y − 2 z ) T(x,y,z)=(x+2y-z,\ y+z,\ x+y-2z) T ( x , y , z ) = ( x + 2 y − z , y + z , x + y − 2 z )
Let us find the dimension of the image:
T ( x , y , z ) = ( 1 2 − 1 0 1 1 1 1 − 2 ) ( x y z ) = x ( 1 0 1 ) + y ( 2 1 1 ) + z ( − 1 1 − 2 ) T(x,y,z)=\begin{pmatrix}
1 & 2&-1 \\
0 & 1&1\\
1&1&-2
\end{pmatrix}\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}=x\begin{pmatrix}
1\\0\\1
\end{pmatrix}+ y\begin{pmatrix}
2\\1\\1
\end{pmatrix}+z\begin{pmatrix}
-1\\1\\-2
\end{pmatrix} T ( x , y , z ) = ⎝ ⎛ 1 0 1 2 1 1 − 1 1 − 2 ⎠ ⎞ ⎝ ⎛ x y z ⎠ ⎞ = x ⎝ ⎛ 1 0 1 ⎠ ⎞ + y ⎝ ⎛ 2 1 1 ⎠ ⎞ + z ⎝ ⎛ − 1 1 − 2 ⎠ ⎞
Im T = Span { ( 1 0 1 ) , ( 2 1 1 ) , ( − 1 1 − 2 ) } = Span { ( 1 0 1 ) , ( 2 1 1 ) , ( 2 1 1 ) − 3 ( 1 0 1 ) } = Span { ( 1 0 1 ) , ( 2 1 1 ) } \text{Im} \ T=\text{Span}\begin{Bmatrix}
\begin{pmatrix}
1\\0\\1
\end{pmatrix}, \begin{pmatrix}
2\\1\\1
\end{pmatrix}, \begin{pmatrix}
- 1\\1\\-2
\end{pmatrix}
\end{Bmatrix}= \text{Span}\begin{Bmatrix}
\begin{pmatrix}
1\\0\\1
\end{pmatrix}, \begin{pmatrix}
2\\1\\1
\end{pmatrix}, \begin{pmatrix}
2\\1\\1
\end{pmatrix}-3 \begin{pmatrix}
1 \\0\\
1
\end{pmatrix}
\end{Bmatrix}= \text{Span}\begin{Bmatrix}
\begin{pmatrix}
1\\0\\1
\end{pmatrix},
\begin{pmatrix}2\\1\\1 \end{pmatrix}
\end{Bmatrix} Im T = Span ⎩ ⎨ ⎧ ⎝ ⎛ 1 0 1 ⎠ ⎞ , ⎝ ⎛ 2 1 1 ⎠ ⎞ , ⎝ ⎛ − 1 1 − 2 ⎠ ⎞ ⎭ ⎬ ⎫ = Span ⎩ ⎨ ⎧ ⎝ ⎛ 1 0 1 ⎠ ⎞ , ⎝ ⎛ 2 1 1 ⎠ ⎞ , ⎝ ⎛ 2 1 1 ⎠ ⎞ − 3 ⎝ ⎛ 1 0 1 ⎠ ⎞ ⎭ ⎬ ⎫ = Span ⎩ ⎨ ⎧ ⎝ ⎛ 1 0 1 ⎠ ⎞ , ⎝ ⎛ 2 1 1 ⎠ ⎞ ⎭ ⎬ ⎫
dim Im T = 2 \text{dim } \text{Im} \ T=2 dim Im T = 2
Now we find the dimension of the kernel:
T ( x , y , z ) = ( x + 2 y − z , y + z , x + y − 2 z ) = ( 0 , 0 , 0 ) T(x,y,z)=(x+2y-z,\ y+z,\ x+y-2z)=(0,0,0) T ( x , y , z ) = ( x + 2 y − z , y + z , x + y − 2 z ) = ( 0 , 0 , 0 )
We have that y = − z , x = z − 2 y = 3 z y=-z, \ \ x=z-2y=3z y = − z , x = z − 2 y = 3 z .
So, Ker T = Span { ( 3 − 1 1 ) } \text{Ker} \ T=\text{Span} \begin{Bmatrix}
\begin{pmatrix}
3\\-1\\1\end{pmatrix}
\end{Bmatrix} Ker T = Span ⎩ ⎨ ⎧ ⎝ ⎛ 3 − 1 1 ⎠ ⎞ ⎭ ⎬ ⎫
dim Ker T = 1 \text{dim Ker}\ T=1 dim Ker T = 1
The rank-nullity theorem:
The dimension of the kernel plus the dimension of the image equals the dimension of the domain.
In this case we have dim Ker T + dim Im T = dim R 3 \text{dim Ker} \ T+\text{dim Im}\ T=\text{dim} \ \mathbb{R}^3 dim Ker T + dim Im T = dim R 3 and 1 + 2 = 3 1+2=3 1 + 2 = 3 .
Comments