a)
i.
W={(a,b,c)∈R3∣a+b+c=0}ofR3x=(a,b,c),a+b+c=0y=(a1,b1,c1),a1+b1+c1=0(1)x+y=(a+a1,b+b1,c+c1),a+a1+b+b1+c+c1=0+0=0x+y∈Wi)x+y=y+xii)(x+y)+z=x+(y+z)iii)∃0=(0,0,0)∈W,x+0=xiiii)∀x(a,b,c)∈W∃(−x)=(−a,−b,−c)∈W(−a+(−b)+(−c)=−(a+b+c)=0):x+(−x)=0
(2)r∈R,x=(a,b,c)∈W,a+b+c=0r⋅x=r(a,b,c)=(ra,rb,rc)∈Wra+rb+rc=r(a+b+c)=0i)r,s∈R:(r+s)x=r⋅x+s⋅xii)r(x+y)=r⋅x+r⋅yiii)(rs)x=r⋅(s⋅x)iiii)1⋅x=x
W are subspaces
ii.
Mnn={⎝⎛a11a12...a1na12a22...a2n............a1na2n...ann⎠⎞,aij∈R}A=⎝⎛a11a12...a1na12a22...a2n............a1na2n...ann⎠⎞∈MnnB=⎝⎛b11b12...b1nb12b22...b2n............b1nb2n...bnn⎠⎞∈Mnn
A+B=⎝⎛a11a12...a1na12a22...a2n............a1na2n...ann⎠⎞++⎝⎛b11b12...b1nb12b22...b2n............b1nb2n...bnn⎠⎞==⎝⎛a11+b11a12+b12...a1n+b1na12+b12a22+b22...a2n+b2n............a1n+b1na2n+b2n...ann+bnn⎠⎞∈Mnn
i)A+B=B+Aii)(A+B)+C=A+(B+C)iii)∃0=⎝⎛00...000...0............00...0⎠⎞∈Wnn,A+0=A
iiii)∀A=⎝⎛a11a12...a1na12a22...a2n............a1na2n...ann⎠⎞∈Mnn,∃(−A)=⎝⎛−a11−a12...−a1n−a12−a22...−a2n............−a1n−a2n...−ann⎠⎞∈Mnn:A+(−A)=0
(2)r∈R,A∈Mnnr⋅A=r⋅⎝⎛a11a12...a1na12a22...a2n............a1na2n...ann⎠⎞==⎝⎛r⋅a11r⋅a12...r⋅a1nr⋅a12r⋅a22...r⋅a2n............r⋅a1nr⋅a2n...r⋅ann⎠⎞∈Mnn
i)r,s∈R:(r+s)A=r⋅A+s⋅Aii)r(A+B)=r⋅A+r⋅Biii)(rs)A=r⋅(s⋅A)iiii)1⋅A=A
Mnn are subspaces
iii.
P2={ax2+bx+c∣a,b,c∈R}f=ax2+bx+c∈P2f1=a1x2+b1x+c1∈P2(1)f+f1=ax2+bx+c+a1x2+b1x+c1==(a+a1)x2+(b+b1)x+(c+c1)∈P2
i)f+f1=f1+fii)(f+f1)+f2=f+(f1+f2)iii)∃0=0⋅x2+0⋅x+0)∈P2,f+0=fiiii)∀f∈P2∃(−f)=−ax2+(−b)x+(−c)∈P2:f+(−f)=0
(2)r∈R,f=ax2+bx+c∈P2r⋅f=r(ax2+bx+c)==r⋅ax2+r⋅bx+r⋅c∈P2i)r,s∈R:(r+s)f=r⋅f+s⋅fii)r(f+f1)=r⋅f+r⋅f1iii)(rs)f=r⋅(s⋅f)iiii)1⋅f=f
P2 are subspaces
b)
i.
v1=(λ,−12,−12)v2=(−12,λ,−12)v3=(−12,−12,λ)a⋅v1+b⋅v2+c⋅v3=0a⋅λ−12b−12c=0−12a+b⋅λ−12c=0−12a−12b+c⋅λ=0
Δ=∣∣λ−12−12−12λ−12−12−12λ∣∣=λ3−432λ−3456=0λ3−432λ−3456=0λ3+12λ2−12λ2−432λ−3456=0λ2(λ+12)−12(λ2+36λ+288)=0λ2(λ+12)−12(λ+12)(λ+24)=0(λ+12)(λ2−12λ−288)=0λ=−12,λ=−12,λ=24
For λ=−12,λ=24 the following vectors form a
linearly dependent set in R3.
ii.
x1+2x2−x3+4x4=02x1−x2+3x3+3x4=04x1+x2+3x3+9x4=0x2−x3+x4=02x1+3x2−x3+7x4=0⎝⎛124022−1113−133−1−143917∣0∣0∣0∣0∣0⎠⎞IIr+Ir(−2)IIIr+Ir(−4)IIIIr+Ir(−2)
⎝⎛100002−5−71−3−157−134−5−71−6∣0∣0∣0∣0∣0⎠⎞III+IIIIr⋅5IIIr+IIIIr⋅7IIIIr+IIIIr⋅3
⎝⎛10002100−1−1004100∣0∣0∣0∣0⎠⎞
x1+2x2−x3+4x4=0x2−x3+x4=0x1=−x3−2x4x2=x3−x4
Basis
x1=(−1,1,1,0)x2=(−2,−1,0,1)
dim =2
Comments