Suppose V is finite-dimensional with dim V greater or equal to 2. Prove that
there exist S; T € L(V; V ) such that ST is not equal to T S.
Let v1,v2,...,vnv_1,v_2,...,v_nv1,v2,...,vn be a basis of VVV.
Define S,T∈L(V,V)S,T\in L(V,V)S,T∈L(V,V) such that
S(vl)={v2if l=10otherwiseT(vl)={v1if l=20otherwiseS(v_l)= \begin{cases} v_2 & \text{if }l=1 \\ 0 & otherwise \end{cases} \\ T(v_l)= \begin{cases} v_1 & \text{if }l=2 \\ 0 & otherwise \end{cases}S(vl)={v20if l=1otherwiseT(vl)={v10if l=2otherwise
Consider
(ST)(v1)=S(T(v1))=S(0)=0(ST)(v_1)=S(T(v_1))=S(0)=0(ST)(v1)=S(T(v1))=S(0)=0, since SSS is linear.
But
(TS)(v1)=T(S(v1))=T(v2)=v1≠0(TS)(v_1)=T(S(v_1))=T(v_2)=v_1 \neq 0(TS)(v1)=T(S(v1))=T(v2)=v1=0
So ST≠TSST \neq TSST=TS.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments