Answer to Question #200618 in Linear Algebra for Mpopo

Question #200618

(7.1)Compute the product AB for

0 4 0 1 0 3

A=2 3 1 , B= 1 1 5

3 0 1 2 3 -1


(7.2) Use your answer in (7.1) to evaluate det(AB) and compare it to det(A) det(B).

(7.3)Determine whether or not if det(A + B) is related to det(A) + det(B).


1
Expert's answer
2021-06-01T18:25:55-0400

"A=\\begin{bmatrix}\n 0&4&0\\\\2&3&1\\\\3&0&1\n\\end{bmatrix}" "B=\\begin{bmatrix}\n 1&0&3\\\\1&1&5\\\\2&3&-1\n\\end{bmatrix}"



(7.1) We know that dimension of matrix A=3X3 and dimension of matrix B = 3X3

Then, dimension of matrix AB will be 3X3

"AB=\\begin{bmatrix}\n0+4+0&0+4+0&0+20+0\\\\2+3+2&0+3+3&6+15-1\\\\3+0+2&0+0+3&9+0-1\n\\end{bmatrix}"



"AB=\\begin{bmatrix}\n 4&4&20\\\\7&6&20\\\\5&3&8\n\\end{bmatrix}"



(7.2) We know that if A and B are n x n matrices, then

det(AB) = (det A)(det B)

Proof:-


"AB=\\begin{bmatrix}\n 4&4&20\\\\7&6&20\\\\5&3&8\n\\end{bmatrix}"


"det(AB)=4(48-60)-4(56-100)+20(21-30)\\\\det(AB)=-52\\ \\ ......(1)"


and we know that

"A=\\begin{bmatrix}\n 0&4&0\\\\2&3&1\\\\3&0&1\n\\end{bmatrix}" "B=\\begin{bmatrix}\n 1&0&3\\\\1&1&5\\\\2&3&-1\n\\end{bmatrix}"



"det(A)=0(3-0)-4(2-3)+0(0-9)\\\\det(A)=4"



"det(B)=1(-1-15)-0(-1-10)+3(3-2)\\\\det(B)=-13"


and

"det(A)\\times det(B)=4\\times (-13)=-52\\ \\ .....(2)"


So, from equation (1) and (2) , It is clear that


"\\boxed{det(AB)=det(A)\\times det(B)}"

(7.3)


"A=\\begin{bmatrix}\n 0&4&0\\\\2&3&1\\\\3&0&1\n\\end{bmatrix}" "B=\\begin{bmatrix}\n 1&0&3\\\\1&1&5\\\\2&3&-1\n\\end{bmatrix}"


"A+B=\\begin{bmatrix}\n 0+1&4+0&0+3\\\\2+1&3+1&1+5\\\\3+2&0+3&1-1\n\\end{bmatrix}"


"A+B=\\begin{bmatrix}\n 1&4&3\\\\3&4&5\\\\5&3&0\n\\end{bmatrix}"



"det(A+B)=1(0-15)-4(0-25)+3(9-20)\\\\det(A+B)=52"


and


"det(A)=0(3-0)-4(2-3)+0(0-9)\\\\det(A)=4"



"det(B)=1(-1-15)-0(-1-10)+3(3-2)\\\\det(B)=-13"


So,

"det(A)+det(B)=-9"


So, we can say that "det(A+B)\\neq det(A)+det(B)"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS