(7.1)Compute the product AB for
0 4 0 1 0 3
A=2 3 1 , B= 1 1 5
3 0 1 2 3 -1
(7.2) Use your answer in (7.1) to evaluate det(AB) and compare it to det(A) det(B).
(7.3)Determine whether or not if det(A + B) is related to det(A) + det(B).
"A=\\begin{bmatrix}\n 0&4&0\\\\2&3&1\\\\3&0&1\n\\end{bmatrix}" "B=\\begin{bmatrix}\n 1&0&3\\\\1&1&5\\\\2&3&-1\n\\end{bmatrix}"
(7.1) We know that dimension of matrix A=3X3 and dimension of matrix B = 3X3
Then, dimension of matrix AB will be 3X3
"AB=\\begin{bmatrix}\n0+4+0&0+4+0&0+20+0\\\\2+3+2&0+3+3&6+15-1\\\\3+0+2&0+0+3&9+0-1\n\\end{bmatrix}"
"AB=\\begin{bmatrix}\n 4&4&20\\\\7&6&20\\\\5&3&8\n\\end{bmatrix}"
(7.2) We know that if A and B are n x n matrices, then
det(AB) = (det A)(det B)
Proof:-
"AB=\\begin{bmatrix}\n 4&4&20\\\\7&6&20\\\\5&3&8\n\\end{bmatrix}"
"det(AB)=4(48-60)-4(56-100)+20(21-30)\\\\det(AB)=-52\\ \\ ......(1)"
and we know that
"A=\\begin{bmatrix}\n 0&4&0\\\\2&3&1\\\\3&0&1\n\\end{bmatrix}" "B=\\begin{bmatrix}\n 1&0&3\\\\1&1&5\\\\2&3&-1\n\\end{bmatrix}"
"det(A)=0(3-0)-4(2-3)+0(0-9)\\\\det(A)=4"
"det(B)=1(-1-15)-0(-1-10)+3(3-2)\\\\det(B)=-13"
and
"det(A)\\times det(B)=4\\times (-13)=-52\\ \\ .....(2)"
So, from equation (1) and (2) , It is clear that
(7.3)
"A=\\begin{bmatrix}\n 0&4&0\\\\2&3&1\\\\3&0&1\n\\end{bmatrix}" "B=\\begin{bmatrix}\n 1&0&3\\\\1&1&5\\\\2&3&-1\n\\end{bmatrix}"
"A+B=\\begin{bmatrix}\n 0+1&4+0&0+3\\\\2+1&3+1&1+5\\\\3+2&0+3&1-1\n\\end{bmatrix}"
"A+B=\\begin{bmatrix}\n 1&4&3\\\\3&4&5\\\\5&3&0\n\\end{bmatrix}"
"det(A+B)=1(0-15)-4(0-25)+3(9-20)\\\\det(A+B)=52"
and
"det(A)=0(3-0)-4(2-3)+0(0-9)\\\\det(A)=4"
"det(B)=1(-1-15)-0(-1-10)+3(3-2)\\\\det(B)=-13"
So,
"det(A)+det(B)=-9"
So, we can say that "det(A+B)\\neq det(A)+det(B)"
Comments
Leave a comment