Question #167040

Check whether or not the set of all symmetric matrix in Mn(R) form a real vector space with respect to the usual addition and scalar multiplication for Mn(R)


1
Expert's answer
2021-03-01T07:15:06-0500

By definition, a real vector space is a non-empty set (it is true for Mn(R)M_n \lparen \Reals \rparen ) equipped with operations of addition and multiplication with a real number which satisfy the following axioms:

  1. A,BMn(R)A+B=B+A\forall A, B \in M_n \lparen \Reals \rparen A + B = B + A ( it is true for arbitrary matrices)
  2. A,B,CMn(R)(A+B)+C=A+(B+C)\forall A, B, C \in M_n \lparen \Reals \rparen (A + B) + C = A + (B + C) (it is true for arbitrary matrices)
  3. θMn(R):AMn(R)A+θ=θ+A=A\exists \theta \in M_n (\Reals) : \forall A \in M_n (\Reals) A + \theta = \theta + A = A (it is true because the zero matrix is a symmetric matrix)
  4. AMn(R)(A)Mn(R):A+(A)=(A)+A=θ\forall A \in M_n (\Reals) \exists (-A) \in M_n (\Reals) : \\ A + (-A) = (-A) + A = \theta (it follows from the matrix transposition properties)
  5. IMn(R):AMn(R)IA=A\exists I \in M_n (\Reals) : \forall A \in M_n (R) I \cdot A = A (it is true because the identical matrix is a symmetric matrix)
  6. α,βR,AMn(R)(αβ)A=α(βA)\forall \alpha , \beta \in \Reals , \forall A \in M_n (\Reals) (\alpha \cdot \beta) \cdot A = \alpha \cdot (\beta \cdot A) (it follows from the matrix multiplication with scalar properies)
  7. αR,A,BMn(R)α(A+B)==αA+αB\forall \alpha \in \Reals , \forall A, B \in M_n (\Reals) \alpha \cdot (A + B) = \\ = \alpha \cdot A + \alpha \cdot B (it follows from the matrix multiplication with scalar properties)
  8. α,βR,AMn(R)(α+β)A==αA+βA\forall \alpha , \beta \in \Reals , \forall A \in M_n (\Reals) (\alpha + \beta) \cdot A = \\ = \alpha \cdot A + \beta \cdot A (it follows from the matrix multiplication with scalar properties)

Thus, Mn(R)M_n (\Reals) is a real vector space.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS