T : R 4 → R 4 , T: \R^4\to \R^4, T : R 4 → R 4 ,
T ( x 1 , x 2 , x 3 , x 4 ) = ( x 1 + x 2 + x 3 + x 4 , x 1 + x 2 , x 3 + x 4 , 0 ) . T(x_1,x_2,x_3,x_4)=(x_1+x_2+x_3+x_4,x_1+x_2,x_3+x_4,0). T ( x 1 , x 2 , x 3 , x 4 ) = ( x 1 + x 2 + x 3 + x 4 , x 1 + x 2 , x 3 + x 4 , 0 ) . (1)
For T ∈ L ( R 4 , R 4 ) , T\in L(\R^4,\R^4), T ∈ L ( R 4 , R 4 ) , the range of T T T is the subset of R 4 \R^4 R 4 consisting of those vectors that are of the form T ( x 1 , x 2 , x 3 , x 4 ) T(x_1,x_2,x_3,x_4) T ( x 1 , x 2 , x 3 , x 4 ) for some ( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 : (x_1,x_2,x_3,x_4)\in \R^4: ( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 :
r a n g e T = { T ( x 1 , x 2 , x 3 , x 4 ) : ( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 } . range T=\{ T(x_1,x_2,x_3,x_4): (x_1,x_2,x_3,x_4)\in \R^4\}. r an g e T = { T ( x 1 , x 2 , x 3 , x 4 ) : ( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 } .
So, T ∈ L ( R 4 , R 4 ) T\in L(\R^4,\R^4) T ∈ L ( R 4 , R 4 ) is defined by (1), then
r a n g e T = { ( x 1 + x 2 + x 3 + x 4 , x 1 + x 2 , x 3 + x 4 , 0 ) : x 1 , x 2 , x 3 , x 4 ∈ R } . range T=\{(x_1+x_2+x_3+x_4,x_1+x_2,x_3+x_4,0): x_1,x_2,x_3,x_4\in\R\}. r an g e T = {( x 1 + x 2 + x 3 + x 4 , x 1 + x 2 , x 3 + x 4 , 0 ) : x 1 , x 2 , x 3 , x 4 ∈ R } .
A = [ 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 ] A=\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1\\
0 & 0 & 0 & 0
\end{bmatrix} A = ⎣ ⎡ 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 ⎦ ⎤
is the matrix satisfying T ( x ) = A x , x ∈ R 4 . T(x)=Ax, x\in\R^4. T ( x ) = A x , x ∈ R 4 . The range of the linear transformation T T T is the same as the range of the matrix A . A. A .
The range of A A A is the columns space of A A A . Thus it is spanned by columns
[ 1 1 0 0 ] , [ 1 0 1 0 ] \begin{bmatrix}
1 \\
1 \\
0 \\
0
\end{bmatrix}, \begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix} ⎣ ⎡ 1 1 0 0 ⎦ ⎤ , ⎣ ⎡ 1 0 1 0 ⎦ ⎤
From the below (2) reduction of the augmented matrix, we see that these vectors are linearly independent, thus a basis for the range.
Therefore, we have
r a n g e T = r a n g e A = s p a n { [ 1 1 0 0 ] , [ 1 0 1 0 ] } range T= range A=span\{\begin{bmatrix}
1 \\
1 \\
0 \\
0
\end{bmatrix},\begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix}\} r an g e T = r an g e A = s p an { ⎣ ⎡ 1 1 0 0 ⎦ ⎤ , ⎣ ⎡ 1 0 1 0 ⎦ ⎤ }
and
{ [ 1 1 0 0 ] , [ 1 0 1 0 ] } \{\begin{bmatrix}
1 \\
1 \\
0 \\
0
\end{bmatrix},
\begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix}\} { ⎣ ⎡ 1 1 0 0 ⎦ ⎤ , ⎣ ⎡ 1 0 1 0 ⎦ ⎤ }
is a basis for r a n g e T . range T. r an g e T .
ker T = { ( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 : T ( x 1 , x 2 , x 3 , x 4 ) = 0 } . \ker T=\{(x_1,x_2,x_3,x_4)\in\R^4: T(x_1,x_2,x_3,x_4)=0\}. ker T = {( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 : T ( x 1 , x 2 , x 3 , x 4 ) = 0 } .
System of LE associated to the implicit equations of the kernel, resulting from equalling to zero the components of the linear transformation formula.
x 1 + x 2 + x 3 + x 4 = 0 x_1+x_2+x_3+x_4=0 x 1 + x 2 + x 3 + x 4 = 0
x 1 + x 2 = 0 x_1+x_2=0 x 1 + x 2 = 0
x 3 + x 4 = 0 x_3+x_4=0 x 3 + x 4 = 0
Transform the augmented matrix A A A to row echelon form.
r 2 → r 2 − r 1 r_2\to r_2-r_1 r 2 → r 2 − r 1
[ 1 1 1 1 0 0 − 1 − 1 0 0 1 1 0 0 0 0 ] \begin{bmatrix}
1 & 1 & 1 & 1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & 1\\
0 & 0 & 0 & 0
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 0 0 1 − 1 1 0 1 − 1 1 0 ⎦ ⎤
r 3 → r 3 + r 2 r_3\to r_3+r_2 r 3 → r 3 + r 2
[ 1 1 1 1 0 0 − 1 − 1 0 0 0 0 0 0 0 0 ] \begin{bmatrix}
1 & 1 & 1 & 1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 0 0 1 − 1 0 0 1 − 1 0 0 ⎦ ⎤
r 1 → r 1 + r 2 r_1\to r_1+r_2 r 1 → r 1 + r 2
[ 1 1 0 0 0 0 − 1 − 1 0 0 0 0 0 0 0 0 ] \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 0 0 0 − 1 0 0 0 − 1 0 0 ⎦ ⎤
r 2 → − 1 r 2 r_2\to -1r_2 r 2 → − 1 r 2
[ 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 ] \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 ⎦ ⎤ (2)
Translate the row echelon form matrix to the associated system of linear equations
x 1 + x 2 = 0 x_1+x_2=0 x 1 + x 2 = 0
x 3 + x 4 = 0 x_3+x_4=0 x 3 + x 4 = 0
The implicit equations of the kernel are the equations above
ker T = { ( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 ∣ x 1 + x 2 = 0 ; x 3 + x 4 = 0 } \ker T=\{(x_1,x_2,x_3,x_4)\in\R^4 | x_1+x_2=0; x_3+x_4=0 \} ker T = {( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 ∣ x 1 + x 2 = 0 ; x 3 + x 4 = 0 }
ker T = [ s − s t − t ] : t , s ∈ R , \ker T =\begin{bmatrix}
s \\
-s \\
t \\
-t
\end{bmatrix}: t,s\in\R, ker T = ⎣ ⎡ s − s t − t ⎦ ⎤ : t , s ∈ R ,
ker T = s p a n { [ 1 − 1 0 0 ] , [ 0 0 1 − 1 ] } \ker T=span\{\begin{bmatrix}
1 \\
-1 \\
0 \\
0
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
1 \\
-1
\end{bmatrix}\} ker T = s p an { ⎣ ⎡ 1 − 1 0 0 ⎦ ⎤ , ⎣ ⎡ 0 0 1 − 1 ⎦ ⎤ }
and
{ [ 1 − 1 0 0 ] , [ 0 0 1 − 1 ] } \{\begin{bmatrix}
1 \\
-1 \\
0 \\
0
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
1 \\
-1
\end{bmatrix}\} { ⎣ ⎡ 1 − 1 0 0 ⎦ ⎤ , ⎣ ⎡ 0 0 1 − 1 ⎦ ⎤ } is a basis for ker T . \ker T. ker T .
Comments
wow great works