Question #106628
Find the range space and the kernel of the
linear transformation :
T: R4 --> R4, T(x1, x2, x3, x4) =
(x1+ x2+ x3+ x4, x1+ x2, x3+ x4, 0)
1
Expert's answer
2020-03-31T10:29:28-0400

T:R4R4,T: \R^4\to \R^4,

T(x1,x2,x3,x4)=(x1+x2+x3+x4,x1+x2,x3+x4,0).T(x_1,x_2,x_3,x_4)=(x_1+x_2+x_3+x_4,x_1+x_2,x_3+x_4,0). (1)


For TL(R4,R4),T\in L(\R^4,\R^4), the range of TT is the subset of R4\R^4 consisting of those vectors that are of the form T(x1,x2,x3,x4)T(x_1,x_2,x_3,x_4) for some (x1,x2,x3,x4)R4:(x_1,x_2,x_3,x_4)\in \R^4:


rangeT={T(x1,x2,x3,x4):(x1,x2,x3,x4)R4}.range T=\{ T(x_1,x_2,x_3,x_4): (x_1,x_2,x_3,x_4)\in \R^4\}.


So, TL(R4,R4)T\in L(\R^4,\R^4) is defined by (1), then

rangeT={(x1+x2+x3+x4,x1+x2,x3+x4,0):x1,x2,x3,x4R}.range T=\{(x_1+x_2+x_3+x_4,x_1+x_2,x_3+x_4,0): x_1,x_2,x_3,x_4\in\R\}.


A=[1111110000110000]A=\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 0 \end{bmatrix}

is  the matrix satisfying T(x)=Ax,xR4.T(x)=Ax, x\in\R^4. The range of the linear transformation TT is the same as the range of the matrix A.A.

The range of AA is the columns space of AA . Thus it is spanned by columns

[1100],[1010]\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}

From the below (2) reduction of the augmented matrix, we see that these vectors are linearly independent, thus a basis for the range.

Therefore, we have

rangeT=rangeA=span{[1100],[1010]}range T= range A=span\{\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix},\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}\}

and

{[1100],[1010]}\{\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}\}

is a basis for rangeT.range T.

kerT={(x1,x2,x3,x4)R4:T(x1,x2,x3,x4)=0}.\ker T=\{(x_1,x_2,x_3,x_4)\in\R^4: T(x_1,x_2,x_3,x_4)=0\}.

System of LE associated to the implicit equations of the kernel, resulting from equalling to zero the components of the linear transformation formula.

x1+x2+x3+x4=0x_1+x_2+x_3+x_4=0

x1+x2=0x_1+x_2=0

x3+x4=0x_3+x_4=0

Transform the augmented matrix AA to row echelon form.

r2r2r1r_2\to r_2-r_1

[1111001100110000]\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 0 \end{bmatrix}

r3r3+r2r_3\to r_3+r_2

[1111001100000000]\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}

r1r1+r2r_1\to r_1+r_2

[1100001100000000]\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}

r21r2r_2\to -1r_2

[1100001100000000]\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} (2)

Translate the row echelon form matrix to the associated system of linear equations

x1+x2=0x_1+x_2=0

x3+x4=0x_3+x_4=0

The implicit equations of the kernel are the equations above


kerT={(x1,x2,x3,x4)R4x1+x2=0;x3+x4=0}\ker T=\{(x_1,x_2,x_3,x_4)\in\R^4 | x_1+x_2=0; x_3+x_4=0 \}


kerT=[sstt]:t,sR,\ker T =\begin{bmatrix} s \\ -s \\ t \\ -t \end{bmatrix}: t,s\in\R,

kerT=span{[1100],[0011]}\ker T=span\{\begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}\}

and

{[1100],[0011]}\{\begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}\} is a basis for kerT.\ker T.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Al-fatir
01.09.21, 16:16

wow great works

LATEST TUTORIALS
APPROVED BY CLIENTS