Question #106623
Let T : R3-> R3be the linear operator
defined by T(x1, x2, x3) = (x1, x3, -2x2- x3).
Let f(x) = - x³+ 2. Find the operator f(T).
1
Expert's answer
2020-03-26T14:39:36-0400

We have f(T)=T3+2If(T)=-T^3+2I

T(x1x2x3)=(100001021)(x1x2x3)T\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix}=\begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-2&-1 \end{pmatrix}\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix}

Then f(T)(x1x2x3)=(T3+2I)(x1x2x3)=f(T)\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix}=(-T^3+2I)\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix}=

=((100001021)3+(200020002))(x1x2x3)=\left(-\begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-2&-1 \end{pmatrix}^3+\begin{pmatrix} 2&0&0\\ 0&2&0\\ 0&0&2 \end{pmatrix}\right)\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix}

(100001021)2=(100001021)(100001021)=\begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-2&-1 \end{pmatrix}^2=\begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-2&-1 \end{pmatrix}\begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-2&-1 \end{pmatrix}=

=(100021021)=\begin{pmatrix} 1&0&0\\ 0&-2&-1\\ 0&2&-1 \end{pmatrix}


(100001021)3=(100001021)2(100001021)=\begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-2&-1 \end{pmatrix}^3=\begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-2&-1 \end{pmatrix}^2\begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-2&-1 \end{pmatrix}=

=(100021021)(100001021)=(100021023)=\begin{pmatrix} 1&0&0\\ 0&-2&-1\\ 0&2&-1 \end{pmatrix}\begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-2&-1 \end{pmatrix}=\begin{pmatrix} 1&0&0\\ 0&2&-1\\ 0&2&3 \end{pmatrix}


(100001021)3+(200020002)=(100021023)+(200020002)=(100001021)-\begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-2&-1 \end{pmatrix}^3+\begin{pmatrix} 2&0&0\\ 0&2&0\\ 0&0&2 \end{pmatrix}=-\begin{pmatrix} 1&0&0\\ 0&2&-1\\ 0&2&3 \end{pmatrix}+\begin{pmatrix} 2&0&0\\ 0&2&0\\ 0&0&2 \end{pmatrix}=\begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-2&-1 \end{pmatrix}

We obtain f(T)(x1x2x3)=(100001021)(x1x2x3)=T(x1x2x3)f(T)\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix}=\begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-2&-1 \end{pmatrix}\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix}=T\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} , that is f(T)=Tf(T)=T

Answer: f(T)=Tf(T)=T


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS