We have f(T)=−T3+2I
T⎝⎛x1x2x3⎠⎞=⎝⎛10000−201−1⎠⎞⎝⎛x1x2x3⎠⎞
Then f(T)⎝⎛x1x2x3⎠⎞=(−T3+2I)⎝⎛x1x2x3⎠⎞=
=⎝⎛−⎝⎛10000−201−1⎠⎞3+⎝⎛200020002⎠⎞⎠⎞⎝⎛x1x2x3⎠⎞
⎝⎛10000−201−1⎠⎞2=⎝⎛10000−201−1⎠⎞⎝⎛10000−201−1⎠⎞=
=⎝⎛1000−220−1−1⎠⎞
⎝⎛10000−201−1⎠⎞3=⎝⎛10000−201−1⎠⎞2⎝⎛10000−201−1⎠⎞=
=⎝⎛1000−220−1−1⎠⎞⎝⎛10000−201−1⎠⎞=⎝⎛1000220−13⎠⎞
−⎝⎛10000−201−1⎠⎞3+⎝⎛200020002⎠⎞=−⎝⎛1000220−13⎠⎞+⎝⎛200020002⎠⎞=⎝⎛10000−201−1⎠⎞
We obtain f(T)⎝⎛x1x2x3⎠⎞=⎝⎛10000−201−1⎠⎞⎝⎛x1x2x3⎠⎞=T⎝⎛x1x2x3⎠⎞ , that is f(T)=T
Answer: f(T)=T
Comments