We need to write the vector "v" linear combination of the basis vectors of B
From the given data
a1=(1,0,1), a2=(1,1,1) and a3=(1,0,0)
Now we can write the vector v as linear combination of the vectors a1,a2 and a3
v=xa1+ya2+za3
(a,b,c)=x(1,0,1)+y(1,1,1)+z(1,0,0)
(a,b,c)=(x,0,x)+(y,y,y)+(z,0,0)
(a,b,c)=(x+y+z,y,x+y) compare both sides ,
x+y+z=ay=bx+y=c Plug y=b in the equation x+y=c then x=c−y=c−b
Now
x+y+z=a
c−b+b+z=a
z=a−c Now we can write the linear combination as
(a,b,c)=(c−b)(1,0,1)+b(1,1,1)+(a−c)(1,0,0)
2).
a1=(1,0,1),a2=(0,1,2) and a3=(−1,−1,0)
Given, f is a linear function
and f(a1)=1,f(a2)=−1,f(a3)=3
Let the function f(x) = ax+by + c z
f(a1)=1 It means,
f(1,0,1)=1
a(1)+b(0)+c(1)=1a+c=1................................(A)
f(a2)=−1
f(0,1,2)=−1a(0)+b(1)+c(−2)=−1b−2c=−1.................................(B)
f(a3)=3f(−1,−1,0)=3a(−1)+b(−1)+c(0)=3−a−b=3.............................(C)
From the equations A, B and C
c=1−a
Plug this c in the equation B, then
b−2+2a=−1b+2a=1.....................(D)
Equation (C) is −a−b=3
From equation C and D
b+2a−a−b=1+3a=4
c=1−a=1−4=−3
b−2c=−1b−2(−3)=−1b+6=−1b=−7
So, the answer is
(a,b,c)=(4,−7,−3)
f(a)=f(a,b,c)=f(4,−7,−3)=4x−7y−3z
Comments