Given the basis {(1, - 1, 3), (0, 1, - 1),
(0, 3, - 2)} of R3, determine its dual basis.
1
Expert's answer
2020-03-26T07:52:47-0400
Let e1=(1,0,0),e2=(0,1,0),e3=(0,0,1) be the standard basis, and E1,E2,E3 be the its dual basis. Then δji=Ei(ej), where δji={1,0,if i=jif i=j
Let f1=(1,−1,3)=(f11,f21,f31),
f2=(0,1,−1)=(f12,f22,f32),f3=(0,3,−2)=(f13,f23,f33) be the given basis, and F1=F11E1+F12E2+F13E3,
F2=F21E1+F22E2+F23E3,
F3=F31E1+F32E2+F33E3 be a its dual basis.
We have Ei(fj)=Ei(f1je1+f1j2e12+f3je3)=fij.
Then δij=Fi(fj)=(Fi1E1+Fi2E2+Fi3E3)(fj)=
=Fi1f1j+Fi2f2j+Fi3f3j.
That is I=⎝⎛F11F21F31F12F22F32F13F23F33⎠⎞⎝⎛f11f21f31f12f22f32f13f23f33⎠⎞, so ⎝⎛F11F21F31F12F22F32F13F23F33⎠⎞=⎝⎛f11f21f31f12f22f32f13f23f33⎠⎞−1
We obtain ⎝⎛F11F21F31F12F22F32F13F23F33⎠⎞=⎝⎛1−1301−103−2⎠⎞−1 .
Find ⎝⎛1−1301−103−2⎠⎞−1.
⎝⎛1−1301−103−2100010001⎠⎞→
→⎝⎛10001−103−211−3010001⎠⎞→
→⎝⎛10001003111−2011001⎠⎞→
→⎝⎛10001000117−20−210−31⎠⎞
So ⎝⎛F11F21F31F12F22F32F13F23F33⎠⎞=⎝⎛1−1301−103−2⎠⎞−1=⎝⎛17−20−210−31⎠⎞
Comments