Question #106618
Given the basis {(1, - 1, 3), (0, 1, - 1),
(0, 3, - 2)} of R3, determine its dual basis.
1
Expert's answer
2020-03-26T07:52:47-0400

Let e1=(1,0,0),e2=(0,1,0),e3=(0,0,1)e^1=(1,0,0),e^2=(0,1,0),e^3=(0,0,1) be the standard basis, and E1,E2,E3E_1,E_2,E_3 be the its dual basis. Then δji=Ei(ej)\delta^i_j=E_i(e^j), where δji={1,if i=j0,if ij\delta^i_j=\begin{cases} 1,&\text{if $i=j$}\\ 0,&\text{if $i\neq j$} \end{cases}

Let f1=(1,1,3)=(f11,f21,f31),f^1=(1,-1,3)=(f^1_1,f^1_2,f^1_3),

f2=(0,1,1)=(f12,f22,f32),f3=(0,3,2)=(f13,f23,f33)f^2=(0,1,-1)=(f^2_1,f^2_2,f^2_3), f^3=(0,3,-2)=(f^3_1,f^3_2,f^3_3) be the given basis, and F1=F11E1+F12E2+F13E3,F_1=F_1^1E_1+F_1^2E_2+F_1^3E_3,

F2=F21E1+F22E2+F23E3,F_2=F_2^1E_1+F_2^2E_2+F_2^3E_3,

F3=F31E1+F32E2+F33E3F_3=F_3^1E_1+F_3^2E_2+F_3^3E_3 be a its dual basis.

We have Ei(fj)=Ei(f1je1+f1j2e12+f3je3)=fijE_i(f^j)=E_i(f^j_1e^1+f^j_12e^12+f^j_3e^3)=f^j_i.

Then δij=Fi(fj)=(Fi1E1+Fi2E2+Fi3E3)(fj)=\delta_i^j=F_i(f^j)=(F_i^1E_1+F_i^2E_2+F_i^3E_3)(f^j)=

=Fi1f1j+Fi2f2j+Fi3f3j=F_i^1f^j_1+F_i^2f^j_2+F_i^3f^j_3.

That is I=(F11F12F13F21F22F23F31F32F33)(f11f12f13f21f22f23f31f32f33)I=\begin{pmatrix} F_1^1&F_1^2&F_1^3\\ F_2^1&F_2^2&F_2^3\\ F_3^1&F_3^2&F_3^3 \end{pmatrix}\begin{pmatrix} f_1^1&f_1^2&f_1^3\\ f_2^1&f_2^2&f_2^3\\ f_3^1&f_3^2&f_3^3 \end{pmatrix}, so (F11F12F13F21F22F23F31F32F33)=(f11f12f13f21f22f23f31f32f33)1\begin{pmatrix} F_1^1&F_1^2&F_1^3\\ F_2^1&F_2^2&F_2^3\\ F_3^1&F_3^2&F_3^3 \end{pmatrix}=\begin{pmatrix} f_1^1&f_1^2&f_1^3\\ f_2^1&f_2^2&f_2^3\\ f_3^1&f_3^2&f_3^3 \end{pmatrix}^{-1}


We obtain (F11F12F13F21F22F23F31F32F33)=(100113312)1\begin{pmatrix} F_1^1&F_1^2&F_1^3\\ F_2^1&F_2^2&F_2^3\\ F_3^1&F_3^2&F_3^3 \end{pmatrix}=\begin{pmatrix} 1&0&0\\ -1&1&3\\ 3&-1&-2 \end{pmatrix}^{-1} .

Find (100113312)1\begin{pmatrix} 1&0&0\\ -1&1&3\\ 3&-1&-2 \end{pmatrix}^{-1}.

(100100113010312001)\left(\begin{array}{lll|lll} 1&0&0&1&0&0\\ -1&1&3&0&1&0\\ 3&-1&-2&0&0&1 \end{array}\right)\to

(100100013110012301)\to\left(\begin{array}{lll|lll} 1&0&0&1&0&0\\ 0&1&3&1&1&0\\ 0&-1&-2&-3&0&1 \end{array}\right)\to

(100100013110001211)\to\left(\begin{array}{lll|lll} 1&0&0&1&0&0\\ 0&1&3&1&1&0\\ 0&0&1&-2&1&1 \end{array}\right)\to

(100100010723001211)\to\left(\begin{array}{ccc|ccc} 1&0&0&1&0&0\\ 0&1&0&7&-2&-3\\ 0&0&1&-2&1&1 \end{array}\right)

So (F11F12F13F21F22F23F31F32F33)=(100113312)1=(100723211)\begin{pmatrix} F_1^1&F_1^2&F_1^3\\ F_2^1&F_2^2&F_2^3\\ F_3^1&F_3^2&F_3^3 \end{pmatrix}=\begin{pmatrix} 1&0&0\\ -1&1&3\\ 3&-1&-2 \end{pmatrix}^{-1}=\begin{pmatrix} 1&0&0\\ 7&-2&-3\\ -2&1&1 \end{pmatrix}

That is F1=F11E1+F12E2+F13E3=E1,F_1=F_1^1E_1+F_1^2E_2+F_1^3E_3=E_1,

F2=F21E1+F22E2+F23E3=7E12E23E3,F_2=F_2^1E_1+F_2^2E_2+F_2^3E_3=7E_1-2E_2-3E_3,

F3=F31E1+F32E2+F33E3=2E1+E2+E3F_3=F_3^1E_1+F_3^2E_2+F_3^3E_3=-2E_1+E_2+E_3

Answer: E1,7E12E23E3,2E1+E2+E3E_1, 7E_1-2E_2-3E_3, -2E_1+E_2+E_3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS