Question #106513
A is a 3x4 matrix where A= (1 1 0 0 \ -1 3 0 1 \ -3 1 -2 1)
Find an orthonormal basis for the row space of the matrix using the Gram-Schmidt Process
1
Expert's answer
2020-03-26T13:41:35-0400

Let the row space of the matrix AA is denoted by {u1,u2,u3}\{ u_1,u_2,u_3 \} .

Where u1=(1,1,0,0),u2=(1,3,0,1),u3=(3,1,2,1)u_1=(1,1,0,0),u_2=(-1,3,0,1),u_3=(-3,1,-2,1)

Let the orthonormal basis of the row space of AA is {w1,w2,w3}\{w_1,w_2,w_3 \} .

Now, applying Gram-Schmidt Orthogonalization process ,

w1=u1=(1,1,0,0)w_1=u_1=(1,1,0,0)


w2=u2<u2,w1><w1,w1>w1w_2=u_2-\frac{<u{_2},w{_1}>}{<w_1,w_1>}w_1

=u222w1=(2,2,0,1)=u_2-\frac{2}{2}w_1=(-2,2,0,1)

w3=u3<u3,w1><w1,w1>w1<u3,w2><w2,w2>w2w_3=u_3-\frac{<u_3,w_1>}{<w_1,w_1>}w_1-\frac{<u_3,w_2>}{<w_2,w_2>}w_2

=u322w199w2=u_3-\frac{-2}{2} w_1- \frac{9}{9} w_2

=(3,1,2,1)+(1,1,0,0)(2,2,0,1)=(-3,1,-2,1)+(1,1,0,0)-(-2,2,0,1)

=(0,0,2,0)=(0,0,-2,0)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS