Let the row space of the matrix "A" is denoted by "\\{ u_1,u_2,u_3 \\}" .
Where "u_1=(1,1,0,0),u_2=(-1,3,0,1),u_3=(-3,1,-2,1)"
Let the orthonormal basis of the row space of "A" is "\\{w_1,w_2,w_3 \\}" .
Now, applying Gram-Schmidt Orthogonalization process ,
"w_1=u_1=(1,1,0,0)"
"=u_2-\\frac{2}{2}w_1=(-2,2,0,1)"
"w_3=u_3-\\frac{<u_3,w_1>}{<w_1,w_1>}w_1-\\frac{<u_3,w_2>}{<w_2,w_2>}w_2""=u_3-\\frac{-2}{2} w_1- \\frac{9}{9} w_2"
"=(-3,1,-2,1)+(1,1,0,0)-(-2,2,0,1)"
"=(0,0,-2,0)"
Comments
Leave a comment