Let's consider "e_1=(1,1,1), e_2=(1,-1,0),e_3=(1,1,0)" .
Let's show that "e_1,e_2,e_3" is a basis of "R^3" :
"\\alpha_1 e_1+\\alpha_2 e_2+\\alpha_3 e_3=0" ,
where "\\alpha_1 =\\alpha_2=\\alpha_3=0" .
Really
"\\alpha_1 +\\alpha_2+\\alpha_3=0\\\\\n\\alpha_1 -\\alpha_2+\\alpha_3=0\\\\\n\\alpha_1 =0"
Then "\\alpha_1 =\\alpha_2=\\alpha_3=0" .
So "e_1,e_2,e_3" is a basis of "R^3".
Find a dual basis to this basis.
We can find the biorthogonal (dual) basis "\\{e^1,e^2,e^3\\}" by formulas below:
"e^1=(\\frac{e_2\\times e_3}{V})^T,e^2=(\\frac{e_3\\times e_1}{V})^T,e^3=(\\frac{e_1\\times e_2}{V})^T,"
where "^T" denotes the transpose and "V=(e_1,e_2,e_3)=e_1\\cdot(e_2\\times e_3)"
is the volume of the parallelepiped formed by the basis vectors "e_1,e_2,e_3" .
In our case
"V=\\begin{vmatrix}\n 1 & 1&1 \\\\\n 1 & -1&0\\\\\n1&1&0\n\\end{vmatrix}=1\\cdot(-1)\\cdot0+1\\cdot0\\cdot1+\\\\\n+1\\cdot1\\cdot1-1\\cdot(-1)\\cdot1-1\\cdot1\\cdot0-1\\cdot1\\cdot0=2\\\\\ne_2\\times e_3=(\\begin{vmatrix}\n -1& 0 \\\\\n 1 & 0\n\\end{vmatrix},-\\begin{vmatrix}\n 1& 0 \\\\\n 1 & 0\n\\end{vmatrix},\\begin{vmatrix}\n 1& -1 \\\\\n 1 & 1\n\\end{vmatrix})=\\\\\n=(0,0,2)\\\\\ne_3\\times e_1=(\\begin{vmatrix}\n 1& 0 \\\\\n 1 & 1\n\\end{vmatrix},-\\begin{vmatrix}\n 1& 0 \\\\\n 1 & 1\n\\end{vmatrix},\\begin{vmatrix}\n 1& 1 \\\\\n 1 & 1\n\\end{vmatrix})=\\\\\n=(1,-1,0)\\\\\ne_1\\times e_2=(\\begin{vmatrix}\n 1& 1 \\\\\n -1 & 0\n\\end{vmatrix},-\\begin{vmatrix}\n 1& 1 \\\\\n 1 & 0\n\\end{vmatrix},\\begin{vmatrix}\n 1& 1 \\\\\n 1 & -1\n\\end{vmatrix})=\\\\\n=(1,1,-2)"
Then
"e^1=(\\frac{(0,0,2)}{2})^T=\\begin{pmatrix}\n 0 \\\\\n 0\\\\1\n\\end{pmatrix},\\\\\ne^2=(\\frac{(1,-1,0)}{2})^T=\\begin{pmatrix}\n \\frac{1}{2} \\\\\n -\\frac{1}{2}\\\\0\n\\end{pmatrix},\\\\\ne^3=(\\frac{(1,1,-2)}{2})^T=\\begin{pmatrix}\n \\frac{1}{2}\\\\ \\frac{1}{2} \\\\-1\n\\end{pmatrix}."
Denoting the indexed vector sets as "{\\displaystyle B=\\{v_{i}\\}_{i\\in I}}" and "{\\displaystyle B^{*}=\\{v^{i}\\}_{i\\in I}}" , being biorthogonal means that the elements pair to have an inner product equal to 1 if the indexes are equal, and equal to 0 otherwise. Symbolically, evaluating a dual vector in V∗ on a vector in the original space V:
"{\\displaystyle v^{i}\\cdot v_{j}=\\delta _{j}^{i}={\\begin{cases}1&{\\text{if }}i=j\\\\0&{\\text{if }}i\\neq j{\\text{,}}\\end{cases}}}"
where "{\\displaystyle \\delta _{j}^{i}}" is the Kronecker delta symbol.
In our case
"e^1\\cdot e_1=0+0+1=1\\\\\ne^1\\cdot e_2=0+0+0=0\\\\\ne^1\\cdot e_3=0+0+0=0\\\\\ne^2\\cdot e_1=\\frac{1}{2}-\\frac{1}{2}+0=0\\\\\ne^2\\cdot e_2=\\frac{1}{2}+\\frac{1}{2}+0=1\\\\\ne^2\\cdot e_3=\\frac{1}{2}-\\frac{1}{2}+0=0\\\\\ne^3\\cdot e_1=\\frac{1}{2}+\\frac{1}{2}-1=0\\\\\ne^3\\cdot e_2=\\frac{1}{2}-\\frac{1}{2}+0=0\\\\\ne^3\\cdot e_3=\\frac{1}{2}+\\frac{1}{2}+0=1"
https://en.wikipedia.org/wiki/Dual_basis
Comments
Leave a comment