Question #106261
Let W {(x, y, z) R3: x + y + z = 0}. Check
if W is a subspace of R3 . Find a non-zero
subspace U of R3 so that W(intersection)U = (0).
1
Expert's answer
2020-03-23T15:50:22-0400

W={(x,y,z)R3:x+y+z=0}W=\{(x,y,z)\in\mathbb{R}^3: x+y+z=0\}

1) u=(0,0,0): uW?u=(0,0,0): \ u\in W?

0+0+0=0 uW0+0+0=0\ \Rightarrow u\in W

2) u=(x1,y1,z1), v=(x2,y2,z2),u,vW:  u+vW?u=(x_1,y_1,z_1), \ v=(x_2,y_2,z_2), u,v\in W: \ \ u+v\in W?

u+v=(x1+x2,y1+y2,z1+z2)u+v=(x_1+x_2,y_1+y_2,z_1+z_2)

(x1+x2)+(y1+y2)+(z1+z2)=(x1+y1+z1)+(x2+y2+z2)=0+0=0(x_1+x_2)+(y_1+y_2)+(z_1+z_2)=(x_1+y_1+z_1)+(x_2+y_2+z_2)=0+0=0

 u+vW\Rightarrow \ u+v\in W

3) u=(x,y,z)W,λR: λuW?u=(x,y,z)\in W, \lambda \in \mathbb{R}: \ \lambda u\in W?

λx+λy+λz=λ(x+y+z)=λ0=0 λuW\lambda x+\lambda y+\lambda z=\lambda(x+y+z)=\lambda \cdot 0=0\Rightarrow \ \lambda u\in W

Therefore, WW is a subspace of R3\mathbb{R}^3


U={(x,y,z)R3:x=y=z}U=\{(x,y,z)\in \mathbb{R}^3: x=y=z\} , UU is non-zero because (1,1,1)U(1,1,1)\in U

1) u=(0,0,0): uU?u=(0,0,0): \ u\in U?

0=0=0 uU0=0=0 \ \Rightarrow u\in U

2) u=(x1,y1,z1), v=(x2,y2,z2),u,vU:  u+vU?u=(x_1,y_1,z_1), \ v=(x_2,y_2,z_2), u,v\in U: \ \ u+v\in U?

x1=y1=z1, x2=y2=z2 x1+x2=y1+y2=z1+z2 u+vUx_1=y_1=z_1, \ x_2=y_2=z_2\ \Rightarrow x_1+x_2=y_1+y_2=z_1+z_2\ \Rightarrow u+v\in U

3) u=(x,y,z)U,λR: λuU?u=(x,y,z)\in U, \lambda \in \mathbb{R}: \ \lambda u\in U?

x=y=z λx=λy=λz λuUx=y=z\ \Rightarrow \lambda x =\lambda y=\lambda z\ \Rightarrow \lambda u\in U

Therefore, UU is a (non-zero) subspace of R3\mathbb{R}^3


Suppose that uWUu\in W \cap U

{x+y+z=0x=y=z{3x=0x=y=zx=y=z=0,  u=(0,0,0)\begin{cases} x+y+z=0 \\ x=y=z \end{cases} \quad \begin{cases} 3x=0 \\ x=y=z \end{cases} \Rightarrow x=y=z=0, \ \ u=(0,0,0)

Therefore, WU={0}W\cap U=\{0\}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS