"W=\\{(x,y,z)\\in\\mathbb{R}^3: x+y+z=0\\}"
1) "u=(0,0,0): \\ u\\in W?"
"0+0+0=0\\ \\Rightarrow u\\in W"
2) "u=(x_1,y_1,z_1), \\ v=(x_2,y_2,z_2), u,v\\in W: \\ \\ u+v\\in W?"
"u+v=(x_1+x_2,y_1+y_2,z_1+z_2)"
"(x_1+x_2)+(y_1+y_2)+(z_1+z_2)=(x_1+y_1+z_1)+(x_2+y_2+z_2)=0+0=0"
"\\Rightarrow \\ u+v\\in W"
3) "u=(x,y,z)\\in W, \\lambda \\in \\mathbb{R}: \\ \\lambda u\\in W?"
"\\lambda x+\\lambda y+\\lambda z=\\lambda(x+y+z)=\\lambda \\cdot 0=0\\Rightarrow \\ \\lambda u\\in W"
Therefore, "W" is a subspace of "\\mathbb{R}^3"
"U=\\{(x,y,z)\\in \\mathbb{R}^3: x=y=z\\}" , "U" is non-zero because "(1,1,1)\\in U"
1) "u=(0,0,0): \\ u\\in U?"
"0=0=0 \\ \\Rightarrow u\\in U"
2) "u=(x_1,y_1,z_1), \\ v=(x_2,y_2,z_2), u,v\\in U: \\ \\ u+v\\in U?"
"x_1=y_1=z_1, \\ x_2=y_2=z_2\\ \\Rightarrow x_1+x_2=y_1+y_2=z_1+z_2\\ \\Rightarrow u+v\\in U"
3) "u=(x,y,z)\\in U, \\lambda \\in \\mathbb{R}: \\ \\lambda u\\in U?"
"x=y=z\\ \\Rightarrow \\lambda x\n=\\lambda y=\\lambda z\\ \\Rightarrow \\lambda u\\in U"
Therefore, "U" is a (non-zero) subspace of "\\mathbb{R}^3"
Suppose that "u\\in W \\cap U"
"\\begin{cases}\nx+y+z=0\n\\\\\nx=y=z\n\\end{cases}\n\\quad\n\\begin{cases}\n3x=0\n\\\\\nx=y=z\n\\end{cases} \\Rightarrow x=y=z=0, \\ \\ u=(0,0,0)"
Therefore, "W\\cap U=\\{0\\}"
Comments
Leave a comment