W={(x,y,z)∈R3:x+y+z=0}
1) u=(0,0,0): u∈W?
0+0+0=0 ⇒u∈W
2) u=(x1,y1,z1), v=(x2,y2,z2),u,v∈W: u+v∈W?
u+v=(x1+x2,y1+y2,z1+z2)
(x1+x2)+(y1+y2)+(z1+z2)=(x1+y1+z1)+(x2+y2+z2)=0+0=0
⇒ u+v∈W
3) u=(x,y,z)∈W,λ∈R: λu∈W?
λx+λy+λz=λ(x+y+z)=λ⋅0=0⇒ λu∈W
Therefore, W is a subspace of R3
U={(x,y,z)∈R3:x=y=z} , U is non-zero because (1,1,1)∈U
1) u=(0,0,0): u∈U?
0=0=0 ⇒u∈U
2) u=(x1,y1,z1), v=(x2,y2,z2),u,v∈U: u+v∈U?
x1=y1=z1, x2=y2=z2 ⇒x1+x2=y1+y2=z1+z2 ⇒u+v∈U
3) u=(x,y,z)∈U,λ∈R: λu∈U?
x=y=z ⇒λx=λy=λz ⇒λu∈U
Therefore, U is a (non-zero) subspace of R3
Suppose that u∈W∩U
{x+y+z=0x=y=z{3x=0x=y=z⇒x=y=z=0, u=(0,0,0)
Therefore, W∩U={0}
Comments