Reduce "8x^2-4xy+5y^2" to its normal canonical form.
It is possible to solve this problem using orthogonal transformation.
Let it be a matrix "A" such that
"A = \\begin{bmatrix} \\mathrm{coef} x_1^2 & \\frac{1}{2} \\mathrm{coef} x_1x_2 \\\\\n\\frac{1}{2}\\mathrm{coef} x_2x_1 & \\mathrm{coef} x_2^2\n\\end{bmatrix}"
Remembering that "x_1x_2=x_2x_1" it is possible to calculate "A":
"A = \\begin{bmatrix} 8 & -2 \\\\\n-2 & 5\n\\end{bmatrix}"
To express the given quadratic form in canonical form it is necessary to diagonalize matrix "A", that can be done by the following formula:
"M^{-1}AM =D",
where "M" is normilized eigenvectors matrix and "D" is diagonalized matrix "A".
To find "M" it is necessary to find eigenvalues and eigenvectors of matrix "A":
"\\det(\\lambda I-A)=0 \\Leftrightarrow \\begin{vmatrix}\n\\lambda-8 & 2 \\\\\n2 & \\lambda-5\n\\end{vmatrix} = (\\lambda-8)(\\lambda-5)-4=\\lambda^2-13+36=0"
This equation can be solved with usage of Vieta's formulas:
"\\begin{cases}\n\\lambda_1+\\lambda_2=13 \\\\\n\\lambda_1 \\cdot \\lambda_2 = 36\n\\end{cases} \\Bigg| \\Rightarrow\n\\begin{cases}\n\\lambda_1=4 \\\\\n\\lambda_2=9\n\\end{cases}"
Eigenvector, corresponding to eigenvalue "\\lambda_i" can be found with solving the following equation:
"Av_i=\\lambda_iv_i",
where "v_i" is eigenvector.
1. Eigenvector, corresponding to eigenvalue "\\lambda_1=4":
"Av_1=\\lambda_iv_1 \\Leftrightarrow \\begin{cases}\n8v_{11}-2v_{12}=4v_{11}\\\\\n-2v_{11}+5v_{12}=4v_{12}\n\\end{cases} \\Bigg| \\Leftrightarrow \\begin{cases}\nv_{12}=2v_{11}\\\\\n-2v_{11}+10v_{11}=8v_{11}\n\\end{cases} \\Bigg|\n\\Leftrightarrow \\begin{cases}\nv_{12}=2v_{11}\\\\\n8v_{11}=8v_{11}\n\\end{cases} \\Bigg|\n\\Leftrightarrow \\begin{cases}\nv_{12}=2v_{11}\\\\\nv_{11} \\mathrm{-any\\ number}\n\\end{cases}"
Let "v_{11}=1" , so "v_{12} = 2 v_{11} = 2", so normilized vector "v_1" can be found as:
"\\overline{v}_1 = \\begin{bmatrix}\n\\frac{v_{11}}{\\sqrt{v_{11}^2+v_{12}^2}} \\\\\n\\frac{v_{12}}{\\sqrt{v_{11}^2+v_{12}^2}}\n\\end{bmatrix} = \\begin{bmatrix}\n\\frac{1}{\\sqrt{1^2+2^2}} \\\\\n\\frac{2}{\\sqrt{1^2+2^2}}\n\\end{bmatrix} =\\begin{bmatrix}\n\\frac{1}{\\sqrt{5}} \\\\\n\\frac{2}{\\sqrt{5}}\n\\end{bmatrix}"
2. Eigenvector, corresponding to eigenvalue "\\lambda_2=9":
"Av_2=\\lambda_iv_2 \\Leftrightarrow \\begin{cases}\n8v_{21}-2v_{22}=9v_{21}\\\\\n-2v_{21}+5v_{22}=9v_{12}\n\\end{cases} \\Bigg| \\Leftrightarrow \\begin{cases}\nv_{22}=-\\frac{1}{2}v_{21}\\\\\n-2v_{21}-\\frac{5}{2}v_{21}=-\\frac{9}{2}v_{21}\n\\end{cases} \\Bigg|\n\\Leftrightarrow \\begin{cases}\nv_{22}=-\\frac{1}{2}v_{21}\\\\\n-\\frac{9}{2}v_{21}=-\\frac{9}{2}v_{21}\n\\end{cases} \\Bigg|\n\\Leftrightarrow \\begin{cases}\nv_{22}=-\\frac{1}{2}v_{21}\\\\\nv_{21} \\mathrm{-any\\ number}\n\\end{cases}"
Let "v_{21}=1" , so "v_{22} = -\\frac{1}{2}v_{21} = -\\frac{1}{2}", so normilized vector "v_2" can be found as:
"\\overline{v}_2 = \\begin{bmatrix}\n\\frac{v_{21}}{\\sqrt{v_{21}^2+v_{22}^2}} \\\\\n\\frac{v_{22}}{\\sqrt{v_{21}^2+v_{22}^2}}\n\\end{bmatrix} = \\begin{bmatrix}\n\\frac{1}{\\sqrt{1^2+(-\\frac{1}{2})^2}} \\\\\n\\frac{-\\frac{1}{2}}{\\sqrt{1^2+(-\\frac{1}{2})^2}}\n\\end{bmatrix} =\\begin{bmatrix}\n\\frac{2}{\\sqrt{5}} \\\\\n-\\frac{1}{\\sqrt{5}}\n\\end{bmatrix}"
Combining "\\overline{v}_1" and "\\overline{v}_2" it is possible to get "M":
"M = \\begin{bmatrix}\n\\overline{v}_1 & \\overline{v}_2\n\\end{bmatrix} = \\begin{bmatrix}\n\\frac{1}{\\sqrt{5}} & \\frac{2}{\\sqrt{5}} \\\\\n\\frac{2}{\\sqrt{5}} & -\\frac{1}{\\sqrt{5}}\n\\end{bmatrix} = \\frac{1}{\\sqrt{5}} \\cdot \\begin{bmatrix}\n1 & 2 \\\\\n2 & -1\n\\end{bmatrix}"
Inverse matrix "M^{-1}" can be found as:
"M^{-1} = \\cfrac{1}{\\det M} \\cdot \\cfrac{1}{\\sqrt{5}} \\begin{bmatrix}\n-1 & -2 \\\\ -2 & 1\n\\end{bmatrix}^T = \\cfrac{1}{\\det M} \\cdot \\cfrac{1}{\\sqrt{5}} \\begin{bmatrix}\n-1 & -2 \\\\ -2 & 1\n\\end{bmatrix}"
Determinant of matrix "M" equals to:
"\\det M = \\cfrac{1}{\\sqrt{5}} \\cdot (-\\cfrac{1}{\\sqrt{5}}) - \\cfrac{2}{\\sqrt{5}} \\cdot \\cfrac{2}{\\sqrt{5}} = -\\cfrac{1}{5} - \\cfrac{4}{5}=-1"
So, inverse matrix "M^{-1}" is equal to:
"M^{-1} = \\cfrac{1}{\\det M} \\cdot \\cfrac{1}{\\sqrt{5}} \\begin{bmatrix}\n-1 & -2 \\\\ -2 & 1\n\\end{bmatrix} = \\cfrac{1}{-1} \\cdot \\cfrac{1}{\\sqrt{5}} \\begin{bmatrix}\n-1 & -2 \\\\ -2 & 1\n\\end{bmatrix} = \\cfrac{1}{\\sqrt{5}} \\begin{bmatrix}\n1 & 2 \\\\ 2 & -1\n\\end{bmatrix}"
So, matrix "D" equals to:
"D = M^{-1} A M = \\cfrac{1}{\\sqrt{5}} \\begin{bmatrix}\n1 & 2 \\\\ 2 & -1\n\\end{bmatrix} \\cdot \\begin{bmatrix}\n8 & -2 \\\\ -2 & 5\n\\end{bmatrix} \\cdot \\cfrac{1}{\\sqrt{5}} \\begin{bmatrix}\n1 & 2 \\\\ 2 & -1\n\\end{bmatrix} = \\cfrac{1}{5} \\cdot \\begin{bmatrix}\n1 & 2 \\\\ 2 & -1\n\\end{bmatrix} \\cdot \\begin{bmatrix}\n8 & -2 \\\\ -2 & 5\n\\end{bmatrix} \\cdot \\begin{bmatrix}\n1 & 2 \\\\ 2 & -1\n\\end{bmatrix} = \\cfrac{1}{5} \\begin{bmatrix}\n4 & 8 \\\\ 18 & -9\n\\end{bmatrix} \\cdot \\begin{bmatrix}\n1 & 2 \\\\ 2 & -1\n\\end{bmatrix} = \\cfrac{1}{5} \\cdot \\begin{bmatrix}\n20 & 0 \\\\\n0 & 45\n\\end{bmatrix} = \\begin{bmatrix}\n4 & 0 \\\\\n0 & 9\n\\end{bmatrix}"
So, the canonical form can be found as:
"D_{11} \\hat{x}^2 + D_{22} \\hat{y}^2 =4\\hat{x}^2+9\\hat{y}^2"
Answer: "4\\hat{x}^2+9\\hat{y}^2"
Comments
Leave a comment