Question #106169
Reduce the quadratic form 8x²— 4xy + 5y² to
its normal canonical form.
1
Expert's answer
2020-03-25T13:06:54-0400

Reduce 8x24xy+5y28x^2-4xy+5y^2 to its normal canonical form.

It is possible to solve this problem using orthogonal transformation.

Let it be a matrix AA such that

A=[coefx1212coefx1x212coefx2x1coefx22]A = \begin{bmatrix} \mathrm{coef} x_1^2 & \frac{1}{2} \mathrm{coef} x_1x_2 \\ \frac{1}{2}\mathrm{coef} x_2x_1 & \mathrm{coef} x_2^2 \end{bmatrix}

Remembering that x1x2=x2x1x_1x_2=x_2x_1 it is possible to calculate AA:

A=[8225]A = \begin{bmatrix} 8 & -2 \\ -2 & 5 \end{bmatrix}

To express the given quadratic form in canonical form it is necessary to diagonalize matrix AA, that can be done by the following formula:

M1AM=DM^{-1}AM =D,

where MM is normilized eigenvectors matrix and DD is diagonalized matrix AA.

To find MM it is necessary to find eigenvalues and eigenvectors of matrix AA:

det(λIA)=0λ822λ5=(λ8)(λ5)4=λ213+36=0\det(\lambda I-A)=0 \Leftrightarrow \begin{vmatrix} \lambda-8 & 2 \\ 2 & \lambda-5 \end{vmatrix} = (\lambda-8)(\lambda-5)-4=\lambda^2-13+36=0

This equation can be solved with usage of Vieta's formulas:

{λ1+λ2=13λ1λ2=36{λ1=4λ2=9\begin{cases} \lambda_1+\lambda_2=13 \\ \lambda_1 \cdot \lambda_2 = 36 \end{cases} \Bigg| \Rightarrow \begin{cases} \lambda_1=4 \\ \lambda_2=9 \end{cases}

Eigenvector, corresponding to eigenvalue λi\lambda_i can be found with solving the following equation:

Avi=λiviAv_i=\lambda_iv_i,

where viv_i is eigenvector.

1. Eigenvector, corresponding to eigenvalue λ1=4\lambda_1=4:

Av1=λiv1{8v112v12=4v112v11+5v12=4v12{v12=2v112v11+10v11=8v11{v12=2v118v11=8v11{v12=2v11v11any numberAv_1=\lambda_iv_1 \Leftrightarrow \begin{cases} 8v_{11}-2v_{12}=4v_{11}\\ -2v_{11}+5v_{12}=4v_{12} \end{cases} \Bigg| \Leftrightarrow \begin{cases} v_{12}=2v_{11}\\ -2v_{11}+10v_{11}=8v_{11} \end{cases} \Bigg| \Leftrightarrow \begin{cases} v_{12}=2v_{11}\\ 8v_{11}=8v_{11} \end{cases} \Bigg| \Leftrightarrow \begin{cases} v_{12}=2v_{11}\\ v_{11} \mathrm{-any\ number} \end{cases}

Let v11=1v_{11}=1 , so v12=2v11=2v_{12} = 2 v_{11} = 2, so normilized vector v1v_1 can be found as:

v1=[v11v112+v122v12v112+v122]=[112+22212+22]=[1525]\overline{v}_1 = \begin{bmatrix} \frac{v_{11}}{\sqrt{v_{11}^2+v_{12}^2}} \\ \frac{v_{12}}{\sqrt{v_{11}^2+v_{12}^2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{1^2+2^2}} \\ \frac{2}{\sqrt{1^2+2^2}} \end{bmatrix} =\begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix}

2. Eigenvector, corresponding to eigenvalue λ2=9\lambda_2=9:

Av2=λiv2{8v212v22=9v212v21+5v22=9v12{v22=12v212v2152v21=92v21{v22=12v2192v21=92v21{v22=12v21v21any numberAv_2=\lambda_iv_2 \Leftrightarrow \begin{cases} 8v_{21}-2v_{22}=9v_{21}\\ -2v_{21}+5v_{22}=9v_{12} \end{cases} \Bigg| \Leftrightarrow \begin{cases} v_{22}=-\frac{1}{2}v_{21}\\ -2v_{21}-\frac{5}{2}v_{21}=-\frac{9}{2}v_{21} \end{cases} \Bigg| \Leftrightarrow \begin{cases} v_{22}=-\frac{1}{2}v_{21}\\ -\frac{9}{2}v_{21}=-\frac{9}{2}v_{21} \end{cases} \Bigg| \Leftrightarrow \begin{cases} v_{22}=-\frac{1}{2}v_{21}\\ v_{21} \mathrm{-any\ number} \end{cases}

Let v21=1v_{21}=1 , so v22=12v21=12v_{22} = -\frac{1}{2}v_{21} = -\frac{1}{2}, so normilized vector v2v_2 can be found as:

v2=[v21v212+v222v22v212+v222]=[112+(12)21212+(12)2]=[2515]\overline{v}_2 = \begin{bmatrix} \frac{v_{21}}{\sqrt{v_{21}^2+v_{22}^2}} \\ \frac{v_{22}}{\sqrt{v_{21}^2+v_{22}^2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{1^2+(-\frac{1}{2})^2}} \\ \frac{-\frac{1}{2}}{\sqrt{1^2+(-\frac{1}{2})^2}} \end{bmatrix} =\begin{bmatrix} \frac{2}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \end{bmatrix}

Combining v1\overline{v}_1 and v2\overline{v}_2 it is possible to get MM:

M=[v1v2]=[15252515]=15[1221]M = \begin{bmatrix} \overline{v}_1 & \overline{v}_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix} = \frac{1}{\sqrt{5}} \cdot \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}

Inverse matrix M1M^{-1} can be found as:

M1=1detM15[1221]T=1detM15[1221]M^{-1} = \cfrac{1}{\det M} \cdot \cfrac{1}{\sqrt{5}} \begin{bmatrix} -1 & -2 \\ -2 & 1 \end{bmatrix}^T = \cfrac{1}{\det M} \cdot \cfrac{1}{\sqrt{5}} \begin{bmatrix} -1 & -2 \\ -2 & 1 \end{bmatrix}

Determinant of matrix MM equals to:

detM=15(15)2525=1545=1\det M = \cfrac{1}{\sqrt{5}} \cdot (-\cfrac{1}{\sqrt{5}}) - \cfrac{2}{\sqrt{5}} \cdot \cfrac{2}{\sqrt{5}} = -\cfrac{1}{5} - \cfrac{4}{5}=-1

So, inverse matrix M1M^{-1} is equal to:

M1=1detM15[1221]=1115[1221]=15[1221]M^{-1} = \cfrac{1}{\det M} \cdot \cfrac{1}{\sqrt{5}} \begin{bmatrix} -1 & -2 \\ -2 & 1 \end{bmatrix} = \cfrac{1}{-1} \cdot \cfrac{1}{\sqrt{5}} \begin{bmatrix} -1 & -2 \\ -2 & 1 \end{bmatrix} = \cfrac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}

So, matrix DD equals to:

D=M1AM=15[1221][8225]15[1221]=15[1221][8225][1221]=15[48189][1221]=15[200045]=[4009]D = M^{-1} A M = \cfrac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \cdot \begin{bmatrix} 8 & -2 \\ -2 & 5 \end{bmatrix} \cdot \cfrac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} = \cfrac{1}{5} \cdot \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \cdot \begin{bmatrix} 8 & -2 \\ -2 & 5 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} = \cfrac{1}{5} \begin{bmatrix} 4 & 8 \\ 18 & -9 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} = \cfrac{1}{5} \cdot \begin{bmatrix} 20 & 0 \\ 0 & 45 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}

So, the canonical form can be found as:

D11x^2+D22y^2=4x^2+9y^2D_{11} \hat{x}^2 + D_{22} \hat{y}^2 =4\hat{x}^2+9\hat{y}^2

Answer: 4x^2+9y^24\hat{x}^2+9\hat{y}^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS