Reduce 8 x 2 − 4 x y + 5 y 2 8x^2-4xy+5y^2 8 x 2 − 4 x y + 5 y 2 to its normal canonical form.
It is possible to solve this problem using orthogonal transformation.
Let it be a matrix A A A such that
A = [ c o e f x 1 2 1 2 c o e f x 1 x 2 1 2 c o e f x 2 x 1 c o e f x 2 2 ] A = \begin{bmatrix} \mathrm{coef} x_1^2 & \frac{1}{2} \mathrm{coef} x_1x_2 \\
\frac{1}{2}\mathrm{coef} x_2x_1 & \mathrm{coef} x_2^2
\end{bmatrix} A = [ coef x 1 2 2 1 coef x 2 x 1 2 1 coef x 1 x 2 coef x 2 2 ]
Remembering that x 1 x 2 = x 2 x 1 x_1x_2=x_2x_1 x 1 x 2 = x 2 x 1 it is possible to calculate A A A :
A = [ 8 − 2 − 2 5 ] A = \begin{bmatrix} 8 & -2 \\
-2 & 5
\end{bmatrix} A = [ 8 − 2 − 2 5 ]
To express the given quadratic form in canonical form it is necessary to diagonalize matrix A A A , that can be done by the following formula:
M − 1 A M = D M^{-1}AM =D M − 1 A M = D ,
where M M M is normilized eigenvectors matrix and D D D is diagonalized matrix A A A .
To find M M M it is necessary to find eigenvalues and eigenvectors of matrix A A A :
det ( λ I − A ) = 0 ⇔ ∣ λ − 8 2 2 λ − 5 ∣ = ( λ − 8 ) ( λ − 5 ) − 4 = λ 2 − 13 + 36 = 0 \det(\lambda I-A)=0 \Leftrightarrow \begin{vmatrix}
\lambda-8 & 2 \\
2 & \lambda-5
\end{vmatrix} = (\lambda-8)(\lambda-5)-4=\lambda^2-13+36=0 det ( λ I − A ) = 0 ⇔ ∣ ∣ λ − 8 2 2 λ − 5 ∣ ∣ = ( λ − 8 ) ( λ − 5 ) − 4 = λ 2 − 13 + 36 = 0
This equation can be solved with usage of Vieta's formulas:
{ λ 1 + λ 2 = 13 λ 1 ⋅ λ 2 = 36 ∣ ⇒ { λ 1 = 4 λ 2 = 9 \begin{cases}
\lambda_1+\lambda_2=13 \\
\lambda_1 \cdot \lambda_2 = 36
\end{cases} \Bigg| \Rightarrow
\begin{cases}
\lambda_1=4 \\
\lambda_2=9
\end{cases} { λ 1 + λ 2 = 13 λ 1 ⋅ λ 2 = 36 ∣ ∣ ⇒ { λ 1 = 4 λ 2 = 9
Eigenvector, corresponding to eigenvalue λ i \lambda_i λ i can be found with solving the following equation:
A v i = λ i v i Av_i=\lambda_iv_i A v i = λ i v i ,
where v i v_i v i is eigenvector.
1. Eigenvector, corresponding to eigenvalue λ 1 = 4 \lambda_1=4 λ 1 = 4 :
A v 1 = λ i v 1 ⇔ { 8 v 11 − 2 v 12 = 4 v 11 − 2 v 11 + 5 v 12 = 4 v 12 ∣ ⇔ { v 12 = 2 v 11 − 2 v 11 + 10 v 11 = 8 v 11 ∣ ⇔ { v 12 = 2 v 11 8 v 11 = 8 v 11 ∣ ⇔ { v 12 = 2 v 11 v 11 − a n y n u m b e r Av_1=\lambda_iv_1 \Leftrightarrow \begin{cases}
8v_{11}-2v_{12}=4v_{11}\\
-2v_{11}+5v_{12}=4v_{12}
\end{cases} \Bigg| \Leftrightarrow \begin{cases}
v_{12}=2v_{11}\\
-2v_{11}+10v_{11}=8v_{11}
\end{cases} \Bigg|
\Leftrightarrow \begin{cases}
v_{12}=2v_{11}\\
8v_{11}=8v_{11}
\end{cases} \Bigg|
\Leftrightarrow \begin{cases}
v_{12}=2v_{11}\\
v_{11} \mathrm{-any\ number}
\end{cases} A v 1 = λ i v 1 ⇔ { 8 v 11 − 2 v 12 = 4 v 11 − 2 v 11 + 5 v 12 = 4 v 12 ∣ ∣ ⇔ { v 12 = 2 v 11 − 2 v 11 + 10 v 11 = 8 v 11 ∣ ∣ ⇔ { v 12 = 2 v 11 8 v 11 = 8 v 11 ∣ ∣ ⇔ { v 12 = 2 v 11 v 11 − any number
Let v 11 = 1 v_{11}=1 v 11 = 1 , so v 12 = 2 v 11 = 2 v_{12} = 2 v_{11} = 2 v 12 = 2 v 11 = 2 , so normilized vector v 1 v_1 v 1 can be found as:
v ‾ 1 = [ v 11 v 11 2 + v 12 2 v 12 v 11 2 + v 12 2 ] = [ 1 1 2 + 2 2 2 1 2 + 2 2 ] = [ 1 5 2 5 ] \overline{v}_1 = \begin{bmatrix}
\frac{v_{11}}{\sqrt{v_{11}^2+v_{12}^2}} \\
\frac{v_{12}}{\sqrt{v_{11}^2+v_{12}^2}}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{\sqrt{1^2+2^2}} \\
\frac{2}{\sqrt{1^2+2^2}}
\end{bmatrix} =\begin{bmatrix}
\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}}
\end{bmatrix} v 1 = ⎣ ⎡ v 11 2 + v 12 2 v 11 v 11 2 + v 12 2 v 12 ⎦ ⎤ = [ 1 2 + 2 2 1 1 2 + 2 2 2 ] = [ 5 1 5 2 ]
2. Eigenvector, corresponding to eigenvalue λ 2 = 9 \lambda_2=9 λ 2 = 9 :
A v 2 = λ i v 2 ⇔ { 8 v 21 − 2 v 22 = 9 v 21 − 2 v 21 + 5 v 22 = 9 v 12 ∣ ⇔ { v 22 = − 1 2 v 21 − 2 v 21 − 5 2 v 21 = − 9 2 v 21 ∣ ⇔ { v 22 = − 1 2 v 21 − 9 2 v 21 = − 9 2 v 21 ∣ ⇔ { v 22 = − 1 2 v 21 v 21 − a n y n u m b e r Av_2=\lambda_iv_2 \Leftrightarrow \begin{cases}
8v_{21}-2v_{22}=9v_{21}\\
-2v_{21}+5v_{22}=9v_{12}
\end{cases} \Bigg| \Leftrightarrow \begin{cases}
v_{22}=-\frac{1}{2}v_{21}\\
-2v_{21}-\frac{5}{2}v_{21}=-\frac{9}{2}v_{21}
\end{cases} \Bigg|
\Leftrightarrow \begin{cases}
v_{22}=-\frac{1}{2}v_{21}\\
-\frac{9}{2}v_{21}=-\frac{9}{2}v_{21}
\end{cases} \Bigg|
\Leftrightarrow \begin{cases}
v_{22}=-\frac{1}{2}v_{21}\\
v_{21} \mathrm{-any\ number}
\end{cases} A v 2 = λ i v 2 ⇔ { 8 v 21 − 2 v 22 = 9 v 21 − 2 v 21 + 5 v 22 = 9 v 12 ∣ ∣ ⇔ { v 22 = − 2 1 v 21 − 2 v 21 − 2 5 v 21 = − 2 9 v 21 ∣ ∣ ⇔ { v 22 = − 2 1 v 21 − 2 9 v 21 = − 2 9 v 21 ∣ ∣ ⇔ { v 22 = − 2 1 v 21 v 21 − any number
Let v 21 = 1 v_{21}=1 v 21 = 1 , so v 22 = − 1 2 v 21 = − 1 2 v_{22} = -\frac{1}{2}v_{21} = -\frac{1}{2} v 22 = − 2 1 v 21 = − 2 1 , so normilized vector v 2 v_2 v 2 can be found as:
v ‾ 2 = [ v 21 v 21 2 + v 22 2 v 22 v 21 2 + v 22 2 ] = [ 1 1 2 + ( − 1 2 ) 2 − 1 2 1 2 + ( − 1 2 ) 2 ] = [ 2 5 − 1 5 ] \overline{v}_2 = \begin{bmatrix}
\frac{v_{21}}{\sqrt{v_{21}^2+v_{22}^2}} \\
\frac{v_{22}}{\sqrt{v_{21}^2+v_{22}^2}}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{\sqrt{1^2+(-\frac{1}{2})^2}} \\
\frac{-\frac{1}{2}}{\sqrt{1^2+(-\frac{1}{2})^2}}
\end{bmatrix} =\begin{bmatrix}
\frac{2}{\sqrt{5}} \\
-\frac{1}{\sqrt{5}}
\end{bmatrix} v 2 = ⎣ ⎡ v 21 2 + v 22 2 v 21 v 21 2 + v 22 2 v 22 ⎦ ⎤ = ⎣ ⎡ 1 2 + ( − 2 1 ) 2 1 1 2 + ( − 2 1 ) 2 − 2 1 ⎦ ⎤ = [ 5 2 − 5 1 ]
Combining v ‾ 1 \overline{v}_1 v 1 and v ‾ 2 \overline{v}_2 v 2 it is possible to get M M M :
M = [ v ‾ 1 v ‾ 2 ] = [ 1 5 2 5 2 5 − 1 5 ] = 1 5 ⋅ [ 1 2 2 − 1 ] M = \begin{bmatrix}
\overline{v}_1 & \overline{v}_2
\end{bmatrix} = \begin{bmatrix}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}}
\end{bmatrix} = \frac{1}{\sqrt{5}} \cdot \begin{bmatrix}
1 & 2 \\
2 & -1
\end{bmatrix} M = [ v 1 v 2 ] = [ 5 1 5 2 5 2 − 5 1 ] = 5 1 ⋅ [ 1 2 2 − 1 ]
Inverse matrix M − 1 M^{-1} M − 1 can be found as:
M − 1 = 1 det M ⋅ 1 5 [ − 1 − 2 − 2 1 ] T = 1 det M ⋅ 1 5 [ − 1 − 2 − 2 1 ] M^{-1} = \cfrac{1}{\det M} \cdot \cfrac{1}{\sqrt{5}} \begin{bmatrix}
-1 & -2 \\ -2 & 1
\end{bmatrix}^T = \cfrac{1}{\det M} \cdot \cfrac{1}{\sqrt{5}} \begin{bmatrix}
-1 & -2 \\ -2 & 1
\end{bmatrix} M − 1 = det M 1 ⋅ 5 1 [ − 1 − 2 − 2 1 ] T = det M 1 ⋅ 5 1 [ − 1 − 2 − 2 1 ]
Determinant of matrix M M M equals to:
det M = 1 5 ⋅ ( − 1 5 ) − 2 5 ⋅ 2 5 = − 1 5 − 4 5 = − 1 \det M = \cfrac{1}{\sqrt{5}} \cdot (-\cfrac{1}{\sqrt{5}}) - \cfrac{2}{\sqrt{5}} \cdot \cfrac{2}{\sqrt{5}} = -\cfrac{1}{5} - \cfrac{4}{5}=-1 det M = 5 1 ⋅ ( − 5 1 ) − 5 2 ⋅ 5 2 = − 5 1 − 5 4 = − 1
So, inverse matrix M − 1 M^{-1} M − 1 is equal to:
M − 1 = 1 det M ⋅ 1 5 [ − 1 − 2 − 2 1 ] = 1 − 1 ⋅ 1 5 [ − 1 − 2 − 2 1 ] = 1 5 [ 1 2 2 − 1 ] M^{-1} = \cfrac{1}{\det M} \cdot \cfrac{1}{\sqrt{5}} \begin{bmatrix}
-1 & -2 \\ -2 & 1
\end{bmatrix} = \cfrac{1}{-1} \cdot \cfrac{1}{\sqrt{5}} \begin{bmatrix}
-1 & -2 \\ -2 & 1
\end{bmatrix} = \cfrac{1}{\sqrt{5}} \begin{bmatrix}
1 & 2 \\ 2 & -1
\end{bmatrix} M − 1 = det M 1 ⋅ 5 1 [ − 1 − 2 − 2 1 ] = − 1 1 ⋅ 5 1 [ − 1 − 2 − 2 1 ] = 5 1 [ 1 2 2 − 1 ]
So, matrix D D D equals to:
D = M − 1 A M = 1 5 [ 1 2 2 − 1 ] ⋅ [ 8 − 2 − 2 5 ] ⋅ 1 5 [ 1 2 2 − 1 ] = 1 5 ⋅ [ 1 2 2 − 1 ] ⋅ [ 8 − 2 − 2 5 ] ⋅ [ 1 2 2 − 1 ] = 1 5 [ 4 8 18 − 9 ] ⋅ [ 1 2 2 − 1 ] = 1 5 ⋅ [ 20 0 0 45 ] = [ 4 0 0 9 ] D = M^{-1} A M = \cfrac{1}{\sqrt{5}} \begin{bmatrix}
1 & 2 \\ 2 & -1
\end{bmatrix} \cdot \begin{bmatrix}
8 & -2 \\ -2 & 5
\end{bmatrix} \cdot \cfrac{1}{\sqrt{5}} \begin{bmatrix}
1 & 2 \\ 2 & -1
\end{bmatrix} = \cfrac{1}{5} \cdot \begin{bmatrix}
1 & 2 \\ 2 & -1
\end{bmatrix} \cdot \begin{bmatrix}
8 & -2 \\ -2 & 5
\end{bmatrix} \cdot \begin{bmatrix}
1 & 2 \\ 2 & -1
\end{bmatrix} = \cfrac{1}{5} \begin{bmatrix}
4 & 8 \\ 18 & -9
\end{bmatrix} \cdot \begin{bmatrix}
1 & 2 \\ 2 & -1
\end{bmatrix} = \cfrac{1}{5} \cdot \begin{bmatrix}
20 & 0 \\
0 & 45
\end{bmatrix} = \begin{bmatrix}
4 & 0 \\
0 & 9
\end{bmatrix} D = M − 1 A M = 5 1 [ 1 2 2 − 1 ] ⋅ [ 8 − 2 − 2 5 ] ⋅ 5 1 [ 1 2 2 − 1 ] = 5 1 ⋅ [ 1 2 2 − 1 ] ⋅ [ 8 − 2 − 2 5 ] ⋅ [ 1 2 2 − 1 ] = 5 1 [ 4 18 8 − 9 ] ⋅ [ 1 2 2 − 1 ] = 5 1 ⋅ [ 20 0 0 45 ] = [ 4 0 0 9 ]
So, the canonical form can be found as:
D 11 x ^ 2 + D 22 y ^ 2 = 4 x ^ 2 + 9 y ^ 2 D_{11} \hat{x}^2 + D_{22} \hat{y}^2 =4\hat{x}^2+9\hat{y}^2 D 11 x ^ 2 + D 22 y ^ 2 = 4 x ^ 2 + 9 y ^ 2
Answer: 4 x ^ 2 + 9 y ^ 2 4\hat{x}^2+9\hat{y}^2 4 x ^ 2 + 9 y ^ 2
Comments