Let A=⎣⎡1−124−2230−2⎦⎤
Solution:
(a)Find the inverse of A:
(I)inverion algorithm
⎣⎡1−124−223∣10∣0−2∣0010001⎦⎤
⎣⎡10042−63∣13∣0−8∣−2010001⎦⎤
Thus
⎣⎡10041−63∣11.5∣0.5−8∣−200.50001⎦⎤
⎣⎡100010−3∣−11.5∣0.51∣1−20.53001⎦⎤
⎣⎡1000100∣20∣−11∣17−433−1.51⎦⎤
Anser:
A−1=⎣⎡2−117−433−1.51⎦⎤
(II)adjoin method
Thus we have det(A)=2=0, and hence A is invretible.
To find the inverse using the formula, we first determine the confactors Cij of A.
We have
C11=4,C12=−2,C13=2,
C21=14,C22=−8,C23=6,
C13=6,C32=−3,C33=2.
The adjoin matrix of A is
Adj(A)=CT=⎣⎡4−2214−866−32⎦⎤
A−1=det(A)1Adj(A)=⎣⎡2−117−433−1.51⎦⎤
(b)Use matrix method to solve each of the folloing
linear systems:
(I)⎩⎨⎧x1+4x2+3x3=3,−x1−x2+x3=5,−3x1−6x2=2.
A=⎣⎡1−1−34−1−6310⎦⎤,d=⎣⎡352⎦⎤
A−1=⎣⎡2−11−63−237−341⎦⎤
⎣⎡x1x2x3⎦⎤=A−1∗d=⎣⎡−358328−5⎦⎤
x1=−358,x2=328,x3=−5.
(II)⎩⎨⎧3x1+4x2+x3=−5,−2x2−x3=3,−2x1+2x2+2x3=−1.
A=⎣⎡30−24−221−12⎦⎤,d=⎣⎡−53−1⎦⎤
x=A−1∗d;
A−1=⎣⎡1−123−471−1.53⎦⎤
⎣⎡x1x2x3⎦⎤=A−1∗d=
⎣⎡1−123−471−1.53⎦⎤∗⎣⎡−53−1⎦⎤=⎣⎡3−5.58⎦⎤
Answer:
x1=3,x2=−5.5,x3=8.
(c)Use Cramer's rule to solve the system of linear
equation in (b)(I)
A=⎣⎡1−1−34−1−6310⎦⎤,d=⎣⎡352⎦⎤
D=∣∣1−1−34−1−6310∣∣=3
Dx1=∣∣3524−1−6310∣∣=−58
Dx2=∣∣1−1−3352310∣∣=28
Dx3=∣∣1−1−64−1−6352∣∣=−15
x1=DDx1=3−58,
x2=DDx2=328,
x3=DDx3=5−15=−5.
(d)Find det(adj(A))
adj(A)=⎣⎡4−2214−866−3−2⎦⎤
det(adj(A))=4
(e)Use result of (a) to find adj((R+2)AT),R=4
AT=⎣⎡143−1−2022−2⎦⎤∗6=⎣⎡62418−6−1201212−12⎦⎤
adj((R+2)AT)=⎣⎡144504216−72−288−1087221672⎦⎤
Comments