Let "A=\\begin{bmatrix}\n 1&4&3 \\\\\n -1&-2&0\\\\\n2&2&-2\n\\end{bmatrix}"
Solution:
(a)Find the inverse of A:
(I)inverion algorithm
"\\begin{bmatrix}\n 1&4&3|1&0&0 \\\\\n -1&-2&0|0&1&0\\\\\n2&2&-2|0&0&1\n\\end{bmatrix}"
"\\begin{bmatrix}\n 1&4& 3|1&0&0\\\\\n 0&2&3|0&1&0\\\\\n0&-6&-8|-2&0&1\n\\end{bmatrix}"
Thus
"\\begin{bmatrix}\n 1&4&3|1&0&0 \\\\\n 0&1&1.5|0.5&0.5&0\\\\\n0&-6&-8|-2&0&1\n\\end{bmatrix}"
"\\begin{bmatrix}\n 1&0&-3|-1&-2&0 \\\\\n 0&1&1.5|0.5&0.5&0\\\\\n0&0&1|1&3&1\n\\end{bmatrix}"
"\\begin{bmatrix}\n 1&0&0|2&7&3 \\\\\n 0&1&0|-1&-4&-1.5\\\\\n0&0&1|1&3&1\n\\end{bmatrix}"
Anser:
"A^{-1}=\\begin{bmatrix}\n 2&7&3 \\\\\n -1&-4&-1.5\\\\\n1&3&1\n\\end{bmatrix}"
(II)adjoin method
Thus we have "det(A)=2\\not=0," and hence "A" is invretible.
To find the inverse using the formula, we first determine the confactors "C_{ij}\\space of\\space A."
We have
"C_{11}=4,C_{12}=-2,C_{13}=2,"
"C_{21}=14,C_{22}=-8,C_{23}=6,"
"C_{13}=6,C_{32}=-3,C_{33}=2."
The adjoin matrix of "A" is
"Adj(A)=C^T=\\begin{bmatrix}\n 4&14&6 \\\\\n -2&-8&-3\\\\\n2&6&2\n\\end{bmatrix}"
"A^{-1}=\\frac{1}{det(A)}Adj(A)=\\begin{bmatrix}\n 2&7&3 \\\\\n -1&-4&-1.5\\\\\n1&3&1\n\\end{bmatrix}"
(b)Use matrix method to solve each of the folloing
linear systems:
(I)"\\begin{cases}\n x_1+4x_2+3x_3=3, \\\\\n -x_1-x_2+x_3=5,\\\\\n-3x_1-6x_2=2.\n\\end{cases}"
"A=\\begin{bmatrix}\n 1&4&3 \\\\\n -1&-1&1\\\\\n-3&-6&0\n\\end{bmatrix},d=\\begin{bmatrix}\n 3\\\\\n 5\\\\\n2\n\\end{bmatrix}"
"A^{-1}=\\begin{bmatrix}\n 2&-6&\\frac{7}{3} \\\\\n -1&3&-\\frac{4}{3}\\\\\n1&-2&1\n\\end{bmatrix}"
"\\begin{bmatrix}\n x_1 \\\\\n x_2\\\\\nx_3\n\\end{bmatrix}=A^{-1}*d=\\begin{bmatrix}\n -\\frac{58}{3} \\\\\n \\frac{28}{3}\\\\\n-5\n\\end{bmatrix}"
"x_1=-\\frac{58}{3},x_2=\\frac{28}{3},x_3=-5."
(II)"\\begin{cases}\n 3x_1+4x_2+x_3=-5, \\\\\n -2x_2-x_3=3,\\\\\n-2x_1+2x_2+2x_3=-1.\n\\end{cases}"
"A=\\begin{bmatrix}\n 3&4&1 \\\\\n 0&-2&-1\\\\\n-2&2&2\n\\end{bmatrix},d=\\begin{bmatrix}\n -5 \\\\\n 3\\\\\n-1\n\\end{bmatrix}"
"x=A^{-1}*d;"
"A^{-1}=\\begin{bmatrix}\n 1&3&1 \\\\\n -1&-4&-1.5\\\\\n2&7&3\n\\end{bmatrix}"
"\\begin{bmatrix}\n x_1 \\\\\n x_2\\\\\nx_3\n\\end{bmatrix}=A^{-1}*d="
"\\begin{bmatrix}\n 1&3&1\\\\\n -1&-4&-1.5\\\\\n2&7&3\n\\end{bmatrix}*\\begin{bmatrix}\n -5 \\\\\n 3\\\\\n-1\n\\end{bmatrix}=\\begin{bmatrix}\n 3 \\\\\n -5.5\\\\\n8\n\\end{bmatrix}"
Answer:
"x_1=3,x_2=-5.5,x_3=8."
(c)Use Cramer's rule to solve the system of linear
equation in (b)(I)
"A=\\begin{bmatrix}\n 1&4&3\\\\\n -1&-1&1\\\\\n-3&-6&0\n\\end{bmatrix},d=\\begin{bmatrix}\n 3 \\\\\n 5\\\\\n2\n\\end{bmatrix}"
"D=\\begin{vmatrix}\n 1&4&3 \\\\\n -1&-1&1\\\\\n-3&-6&0\n\\end{vmatrix}=3"
"D_{x_1}=\\begin{vmatrix}\n 3&4&3 \\\\\n 5&-1&1\\\\\n2&-6&0\n\\end{vmatrix}=-58"
"D_{x_2}=\\begin{vmatrix}\n 1&3&3 \\\\\n -1&5&1\\\\\n-3&2&0\n\\end{vmatrix}=28"
"D_{x_3}=\\begin{vmatrix}\n 1&4&3\\\\\n -1&-1&5\\\\\n-6&-6&2\n\\end{vmatrix}=-15"
"x_1=\\frac{D_{x_1}}{D}=\\frac{-58}{3},"
"x_2=\\frac{D_{x_2}}{D}=\\frac{28}{3},"
"x_3=\\frac{D_{x_3}}{D}=\\frac{-15}{5}=-5."
(d)Find "det(adj(A))"
"adj(A)=\\begin{bmatrix}\n 4&14&6 \\\\\n -2&-8&-3\\\\\n2&6&-2\n\\end{bmatrix}"
"det(adj(A))=4"
(e)Use result of (a) to find "adj((R+2)A^T),R=4"
"A^T=\\begin{bmatrix}\n 1&-1&2 \\\\\n 4&-2&2\\\\\n3&0&-2\n\\end{bmatrix}*6=\\begin{bmatrix}\n 6&-6&12 \\\\\n 24&-12&12\\\\\n18&0&-12\n\\end{bmatrix}"
"adj((R+2)A^T)=\\begin{bmatrix}\n 144&-72&72\\\\\n 504&-288&216\\\\\n216&-108&72\n\\end{bmatrix}"
Comments
Leave a comment