Question #105340
[img]https://upload.cc/i1/2020/03/13/UfFVyi.jpg[/img]



R is 4
1
Expert's answer
2020-03-16T14:54:10-0400

Let A=[143120222]A=\begin{bmatrix} 1&4&3 \\ -1&-2&0\\ 2&2&-2 \end{bmatrix}

Solution:

(a)Find the inverse of A:

(I)inverion algorithm

[143100120010222001]\begin{bmatrix} 1&4&3|1&0&0 \\ -1&-2&0|0&1&0\\ 2&2&-2|0&0&1 \end{bmatrix}


[143100023010068201]\begin{bmatrix} 1&4& 3|1&0&0\\ 0&2&3|0&1&0\\ 0&-6&-8|-2&0&1 \end{bmatrix}

Thus

[143100011.50.50.50068201]\begin{bmatrix} 1&4&3|1&0&0 \\ 0&1&1.5|0.5&0.5&0\\ 0&-6&-8|-2&0&1 \end{bmatrix}


[103120011.50.50.50001131]\begin{bmatrix} 1&0&-3|-1&-2&0 \\ 0&1&1.5|0.5&0.5&0\\ 0&0&1|1&3&1 \end{bmatrix}


[100273010141.5001131]\begin{bmatrix} 1&0&0|2&7&3 \\ 0&1&0|-1&-4&-1.5\\ 0&0&1|1&3&1 \end{bmatrix}

Anser:

A1=[273141.5131]A^{-1}=\begin{bmatrix} 2&7&3 \\ -1&-4&-1.5\\ 1&3&1 \end{bmatrix}

(II)adjoin method

Thus we have det(A)=20,det(A)=2\not=0, and hence AA is invretible.

To find the inverse using the formula, we first determine the confactors Cij of A.C_{ij}\space of\space A.

We have

C11=4,C12=2,C13=2,C_{11}=4,C_{12}=-2,C_{13}=2,

C21=14,C22=8,C23=6,C_{21}=14,C_{22}=-8,C_{23}=6,

C13=6,C32=3,C33=2.C_{13}=6,C_{32}=-3,C_{33}=2.

The adjoin matrix of AA is

Adj(A)=CT=[4146283262]Adj(A)=C^T=\begin{bmatrix} 4&14&6 \\ -2&-8&-3\\ 2&6&2 \end{bmatrix}

A1=1det(A)Adj(A)=[273141.5131]A^{-1}=\frac{1}{det(A)}Adj(A)=\begin{bmatrix} 2&7&3 \\ -1&-4&-1.5\\ 1&3&1 \end{bmatrix}

(b)Use matrix method to solve each of the folloing

linear systems:

(I){x1+4x2+3x3=3,x1x2+x3=5,3x16x2=2.\begin{cases} x_1+4x_2+3x_3=3, \\ -x_1-x_2+x_3=5,\\ -3x_1-6x_2=2. \end{cases}


A=[143111360],d=[352]A=\begin{bmatrix} 1&4&3 \\ -1&-1&1\\ -3&-6&0 \end{bmatrix},d=\begin{bmatrix} 3\\ 5\\ 2 \end{bmatrix}


A1=[26731343121]A^{-1}=\begin{bmatrix} 2&-6&\frac{7}{3} \\ -1&3&-\frac{4}{3}\\ 1&-2&1 \end{bmatrix}


[x1x2x3]=A1d=[5832835]\begin{bmatrix} x_1 \\ x_2\\ x_3 \end{bmatrix}=A^{-1}*d=\begin{bmatrix} -\frac{58}{3} \\ \frac{28}{3}\\ -5 \end{bmatrix}


x1=583,x2=283,x3=5.x_1=-\frac{58}{3},x_2=\frac{28}{3},x_3=-5.

(II){3x1+4x2+x3=5,2x2x3=3,2x1+2x2+2x3=1.\begin{cases} 3x_1+4x_2+x_3=-5, \\ -2x_2-x_3=3,\\ -2x_1+2x_2+2x_3=-1. \end{cases}


A=[341021222],d=[531]A=\begin{bmatrix} 3&4&1 \\ 0&-2&-1\\ -2&2&2 \end{bmatrix},d=\begin{bmatrix} -5 \\ 3\\ -1 \end{bmatrix}

x=A1d;x=A^{-1}*d;

A1=[131141.5273]A^{-1}=\begin{bmatrix} 1&3&1 \\ -1&-4&-1.5\\ 2&7&3 \end{bmatrix}


[x1x2x3]=A1d=\begin{bmatrix} x_1 \\ x_2\\ x_3 \end{bmatrix}=A^{-1}*d=


[131141.5273][531]=[35.58]\begin{bmatrix} 1&3&1\\ -1&-4&-1.5\\ 2&7&3 \end{bmatrix}*\begin{bmatrix} -5 \\ 3\\ -1 \end{bmatrix}=\begin{bmatrix} 3 \\ -5.5\\ 8 \end{bmatrix}

Answer:

x1=3,x2=5.5,x3=8.x_1=3,x_2=-5.5,x_3=8.

(c)Use Cramer's rule to solve the system of linear

equation in (b)(I)

A=[143111360],d=[352]A=\begin{bmatrix} 1&4&3\\ -1&-1&1\\ -3&-6&0 \end{bmatrix},d=\begin{bmatrix} 3 \\ 5\\ 2 \end{bmatrix}


D=143111360=3D=\begin{vmatrix} 1&4&3 \\ -1&-1&1\\ -3&-6&0 \end{vmatrix}=3


Dx1=343511260=58D_{x_1}=\begin{vmatrix} 3&4&3 \\ 5&-1&1\\ 2&-6&0 \end{vmatrix}=-58


Dx2=133151320=28D_{x_2}=\begin{vmatrix} 1&3&3 \\ -1&5&1\\ -3&2&0 \end{vmatrix}=28


Dx3=143115662=15D_{x_3}=\begin{vmatrix} 1&4&3\\ -1&-1&5\\ -6&-6&2 \end{vmatrix}=-15


x1=Dx1D=583,x_1=\frac{D_{x_1}}{D}=\frac{-58}{3},


x2=Dx2D=283,x_2=\frac{D_{x_2}}{D}=\frac{28}{3},


x3=Dx3D=155=5.x_3=\frac{D_{x_3}}{D}=\frac{-15}{5}=-5.

(d)Find det(adj(A))det(adj(A))


adj(A)=[4146283262]adj(A)=\begin{bmatrix} 4&14&6 \\ -2&-8&-3\\ 2&6&-2 \end{bmatrix}


det(adj(A))=4det(adj(A))=4

(e)Use result of (a) to find adj((R+2)AT),R=4adj((R+2)A^T),R=4

AT=[112422302]6=[661224121218012]A^T=\begin{bmatrix} 1&-1&2 \\ 4&-2&2\\ 3&0&-2 \end{bmatrix}*6=\begin{bmatrix} 6&-6&12 \\ 24&-12&12\\ 18&0&-12 \end{bmatrix}


adj((R+2)AT)=[144727250428821621610872]adj((R+2)A^T)=\begin{bmatrix} 144&-72&72\\ 504&-288&216\\ 216&-108&72 \end{bmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS