4a)
A=⎣⎡k−1−kk−12k−k−2k2−k1⎦⎤
∣A∣=0∣A∣=∣∣k−1−kk−12k−k−2k2−k1∣∣==(k−1)⋅2k⋅1+(−1)⋅(2−k)⋅k++(−k)⋅(−k)⋅(−2k)−(−2k)⋅2k⋅k−−(−1)⋅(−k)⋅1−(k−1)⋅(2−k)⋅(−k)==2k2−2k−2k+k2−2k3+4k3−k++2k2−k3−2k+k2=k3+6k2−7kk3+6k2−7k=0k(k2+6k−7)=0k1=0k2+6k−7=0(k2+6k−7=0k2+k3=−6k2⋅k3=−7k2=−7,k3=1)k2=−7k3=1
The matrix A is non-singular if k=0,k=1,k=−7 .
4b)
A=⎣⎡13221330011k2k5−5⎦⎤
∣A∣=0∣A∣=∣∣13221330011k2k5−5∣∣
IIrow +Irow(-3)
IIIrow +Irow(-2)
IVrow +Irow(--2)
∣A∣=∣∣1000101−2011k2k−61−9∣∣
IIIrow ⟺ IIrow
∣A∣=∣∣1000110−2011k21k−6−9∣∣
IVrow+IIrow(2)
∣A∣=∣∣10001100011k+221k−6−7∣∣
IVrow+IIIrow(-k-2)
∣A∣=∣∣10001100011021k−6−k2+4k+5∣∣=1⋅1⋅1⋅(−k2+4k+5)=−k2+4k+5=0
k2−4k−5=0(k2−4k−5=0k1+k2=4k1⋅k2=−5k1=5,k2=−1)k1=5,k2=−1
The matrix A
A is non-singular if k=5,k=−1
5a)
∣B∣=∣∣111pqqrprr2p2q2∣∣
IIrow+Irow(-1)
IIIrow+Irow(-1)
∣B∣=∣∣100pqqr−pqpr−pqr2p2−r2q2−r2∣∣==∣∣100pq−q(p−r)−p(q−r)r2(p−r)(p+r)(q−r)(q+r)∣∣==(p−r)(q−r)∣∣100pq−q−pr2p+rq+r∣∣
IIIrow+IIrow(-1)
∣B∣=(p−r)(q−r)∣∣100pq−q−p+qr2p+rq−p∣∣==(p−r)(q−r)(q−p)∣∣100pq−q1r2p+r1∣∣
IIIrow ⟺ IIrow
∣B∣=−(p−r)(q−r)(q−p)∣∣100pq1−qr21p+r∣∣
IIIrow+IIrow(q)
∣B∣=(p−r)(q−r)(p−q)∣∣100pq10r21p+r+q∣∣==(p−r)(q−r)(p−q)(p+r+q)
5b)
∣C∣=∣∣111(R+1)x(R+3)x(R+1)(R+3)(R+3)2(R+1)2x2∣∣
In our case
p=R+1=4+1=5q=xr=R+3=4+3=7
∣C∣=(p−q)(q−r)(p−r)(p+q+r)==(5−x)(x−7)(5−7)(5+x+7)==−2(5x−35−x2+7x)(12+x)==−2(−x2+12x−35)(12+x)==−2(−x3−109x−420)=2x3+218x+840
Comments