Question #105189
[img]https://upload.cc/i1/2020/03/11/FeuSgt.jpg[/img]



the digit number R is 4
1
Expert's answer
2020-03-12T12:09:48-0400

4a)

A=[k112kk2k2kkk1]A=\begin{bmatrix} k-1 & -1&-2k \\ -k & 2k&2-k\\ k&-k&1 \end{bmatrix}

A0A=k112kk2k2kkk1==(k1)2k1+(1)(2k)k++(k)(k)(2k)(2k)2kk(1)(k)1(k1)(2k)(k)==2k22k2k+k22k3+4k3k++2k2k32k+k2=k3+6k27kk3+6k27k0k(k2+6k7)0k10k2+6k70(k2+6k7=0k2+k3=6k2k3=7k2=7,k3=1)k27k31|A|\neq0\\ |A|=\begin{vmatrix} k-1 & -1&-2k \\ -k & 2k&2-k\\ k&-k&1\end{vmatrix}=\\ =(k-1)\cdot2k\cdot1+(-1)\cdot(2-k)\cdot k+\\ +(-k)\cdot(-k)\cdot(-2k)-(-2k)\cdot2k\cdot k-\\ -(-1)\cdot(-k)\cdot1-(k-1)\cdot(2-k)\cdot(-k)=\\ =2k^2-2k-2k+k^2-2k^3+4k^3-k+\\ +2k^2-k^3-2k+k^2=k^3+6k^2-7k\\ k^3+6k^2-7k\neq0\\ k(k^2+6k-7)\neq0\\ k_1\neq0\\ k^2+6k-7\neq0\\ (k^2+6k-7=0\\ k_2+k_3=-6\\ k_2\cdot k_3=-7\\ k_2=-7, k_3=1)\\ k_2\neq-7\\ k_3\neq1

The matrix AA is non-singular if k0,k1,k7k\neq0, k\neq1, k\neq-7 .


4b)

A=[1102331k231520k5]A=\begin{bmatrix} 1 & 1&0&2 \\ 3 & 3&1&k\\ 2&3&1&5\\ 2&0&k&-5 \end{bmatrix}


A0A=1102331k231520k5|A|\neq0\\ |A|=\begin{vmatrix} 1 & 1&0&2 \\ 3 & 3&1&k\\ 2&3&1&5\\ 2&0&k&-5 \end{vmatrix}


IIrow +Irow(-3)

IIIrow +Irow(-2)

IVrow +Irow(--2)

A=1102001k6011102k9|A|=\begin{vmatrix} 1 & 1&0&2 \\ 0 & 0&1&k-6\\ 0&1&1&1\\ 0&-2&k&-9 \end{vmatrix}

IIIrow     \iff IIrow

A=11020111001k602k9|A|=\begin{vmatrix} 1 & 1&0&2 \\ 0 & 1&1&1\\ 0&0&1&k-6\\ 0&-2&k&-9 \end{vmatrix}


IVrow+IIrow(2)

A=11020111001k600k+27|A|=\begin{vmatrix} 1 & 1&0&2 \\ 0 & 1&1&1\\ 0&0&1&k-6\\ 0&0&k+2&-7 \end{vmatrix}


IVrow+IIIrow(-k-2)


A=11020111001k6000k2+4k+5=111(k2+4k+5)=k2+4k+50|A|=\begin{vmatrix} 1 & 1&0&2 \\ 0 & 1&1&1\\ 0&0&1&k-6\\ 0&0&0&-k^2+4k+5 \end{vmatrix}=\\ 1\cdot1\cdot1\cdot(-k^2+4k+5)=-k^2+4k+5\neq0

k24k50(k24k5=0k1+k2=4k1k2=5k1=5,k2=1)k15,k21k^2-4k-5\neq0\\ (k^2-4k-5=0\\ k_1+k_2=4\\ k_1\cdot k_2=-5\\ k_1=5, k_2=-1)\\ k_1\neq5, k_2\neq-1

The matrix A

A is non-singular if k5,k1k\neq5, k\neq-1


5a)

B=1pqr21qrp21prq2|B|=\begin{vmatrix} 1 & pq &r^2\\ 1 & qr&p^2\\ 1&pr&q^2 \end{vmatrix}


IIrow+Irow(-1)

IIIrow+Irow(-1)

B=1pqr20qrpqp2r20prpqq2r2==1pqr20q(pr)(pr)(p+r)0p(qr)(qr)(q+r)==(pr)(qr)1pqr20qp+r0pq+r|B|=\begin{vmatrix} 1 & pq &r^2\\ 0 & qr-pq&p^2-r^2\\ 0&pr-pq&q^2-r^2 \end{vmatrix}=\\ =\begin{vmatrix} 1 & pq &r^2\\ 0 & -q(p-r)&(p-r)(p+r)\\ 0&-p(q-r)&(q-r)(q+r) \end{vmatrix}=\\ =(p-r)(q-r)\begin{vmatrix} 1 & pq &r^2\\ 0 & -q&p+r\\ 0&-p&q+r \end{vmatrix}


IIIrow+IIrow(-1)

B=(pr)(qr)1pqr20qp+r0p+qqp==(pr)(qr)(qp)1pqr20qp+r011|B|=(p-r)(q-r)\begin{vmatrix} 1 & pq &r^2\\ 0 & -q&p+r\\ 0&-p+q&q-p \end{vmatrix}=\\ =(p-r)(q-r)(q-p)\begin{vmatrix} 1 & pq &r^2\\ 0 & -q&p+r\\ 0&1&1 \end{vmatrix}


IIIrow     \iff IIrow

B=(pr)(qr)(qp)1pqr20110qp+r|B|=-(p-r)(q-r)(q-p)\begin{vmatrix} 1 & pq &r^2\\ 0&1&1 \\ 0 & -q&p+r\\ \end{vmatrix}

IIIrow+IIrow(q)

B=(pr)(qr)(pq)1pqr201100p+r+q==(pr)(qr)(pq)(p+r+q)|B|=(p-r)(q-r)(p-q)\begin{vmatrix} 1 & pq &r^2\\ 0 & 1&1\\ 0&0&p+r+q \end{vmatrix}=\\ =(p-r)(q-r)(p-q)(p+r+q)


5b)


C=1(R+1)x(R+3)21(R+3)x(R+1)21(R+1)(R+3)x2|C|=\begin{vmatrix} 1 & (R+1)x&(R+3)^2 \\ 1 & (R+3)x&(R+1)^2\\ 1&(R+1)(R+3)&x^2 \end{vmatrix}

In our case

p=R+1=4+1=5q=xr=R+3=4+3=7p=R+1=4+1=5\\ q=x\\ r=R+3=4+3=7

C=(pq)(qr)(pr)(p+q+r)==(5x)(x7)(57)(5+x+7)==2(5x35x2+7x)(12+x)==2(x2+12x35)(12+x)==2(x3109x420)=2x3+218x+840|C|=(p-q)(q-r)(p-r)(p+q+r)=\\ =(5-x)(x-7)(5-7)(5+x+7)=\\ =-2(5x-35-x^2+7x)(12+x)=\\ =-2(-x^2+12x-35)(12+x)=\\ =-2(-x^3-109x-420)=2x^3+218x+840



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS