4a)
"A=\\begin{bmatrix}\n k-1 & -1&-2k \\\\\n -k & 2k&2-k\\\\\nk&-k&1\n\\end{bmatrix}"
"|A|\\neq0\\\\\n|A|=\\begin{vmatrix}\n k-1 & -1&-2k \\\\\n -k & 2k&2-k\\\\\nk&-k&1\\end{vmatrix}=\\\\\n=(k-1)\\cdot2k\\cdot1+(-1)\\cdot(2-k)\\cdot k+\\\\\n+(-k)\\cdot(-k)\\cdot(-2k)-(-2k)\\cdot2k\\cdot k-\\\\\n-(-1)\\cdot(-k)\\cdot1-(k-1)\\cdot(2-k)\\cdot(-k)=\\\\\n=2k^2-2k-2k+k^2-2k^3+4k^3-k+\\\\\n+2k^2-k^3-2k+k^2=k^3+6k^2-7k\\\\\nk^3+6k^2-7k\\neq0\\\\\nk(k^2+6k-7)\\neq0\\\\\nk_1\\neq0\\\\\nk^2+6k-7\\neq0\\\\\n(k^2+6k-7=0\\\\\nk_2+k_3=-6\\\\\nk_2\\cdot k_3=-7\\\\\nk_2=-7, k_3=1)\\\\\n\nk_2\\neq-7\\\\\nk_3\\neq1"
The matrix "A" is non-singular if "k\\neq0, k\\neq1, k\\neq-7" .
4b)
"A=\\begin{bmatrix}\n 1 & 1&0&2 \\\\\n 3 & 3&1&k\\\\\n2&3&1&5\\\\\n2&0&k&-5\n\\end{bmatrix}"
"|A|\\neq0\\\\\n|A|=\\begin{vmatrix}\n 1 & 1&0&2 \\\\\n 3 & 3&1&k\\\\\n2&3&1&5\\\\\n2&0&k&-5\n\\end{vmatrix}"
IIrow +Irow(-3)
IIIrow +Irow(-2)
IVrow +Irow(--2)
"|A|=\\begin{vmatrix}\n 1 & 1&0&2 \\\\\n 0 & 0&1&k-6\\\\\n0&1&1&1\\\\\n0&-2&k&-9\n\\end{vmatrix}"
IIIrow "\\iff" IIrow
"|A|=\\begin{vmatrix}\n 1 & 1&0&2 \\\\\n 0 & 1&1&1\\\\\n0&0&1&k-6\\\\\n0&-2&k&-9\n\\end{vmatrix}"
IVrow+IIrow(2)
"|A|=\\begin{vmatrix}\n 1 & 1&0&2 \\\\\n 0 & 1&1&1\\\\\n0&0&1&k-6\\\\\n0&0&k+2&-7\n\\end{vmatrix}"
IVrow+IIIrow(-k-2)
"|A|=\\begin{vmatrix}\n 1 & 1&0&2 \\\\\n 0 & 1&1&1\\\\\n0&0&1&k-6\\\\\n0&0&0&-k^2+4k+5\n\\end{vmatrix}=\\\\\n1\\cdot1\\cdot1\\cdot(-k^2+4k+5)=-k^2+4k+5\\neq0"
"k^2-4k-5\\neq0\\\\\n(k^2-4k-5=0\\\\\nk_1+k_2=4\\\\\nk_1\\cdot k_2=-5\\\\\nk_1=5, k_2=-1)\\\\\nk_1\\neq5, k_2\\neq-1"
The matrix A
A is non-singular if "k\\neq5, k\\neq-1"
5a)
"|B|=\\begin{vmatrix}\n 1 & pq &r^2\\\\\n 1 & qr&p^2\\\\\n1&pr&q^2\n\\end{vmatrix}"
IIrow+Irow(-1)
IIIrow+Irow(-1)
"|B|=\\begin{vmatrix}\n 1 & pq &r^2\\\\\n 0 & qr-pq&p^2-r^2\\\\\n0&pr-pq&q^2-r^2\n\\end{vmatrix}=\\\\\n=\\begin{vmatrix}\n 1 & pq &r^2\\\\\n 0 & -q(p-r)&(p-r)(p+r)\\\\\n0&-p(q-r)&(q-r)(q+r)\n\\end{vmatrix}=\\\\\n=(p-r)(q-r)\\begin{vmatrix}\n 1 & pq &r^2\\\\\n 0 & -q&p+r\\\\\n0&-p&q+r\n\\end{vmatrix}"
IIIrow+IIrow(-1)
"|B|=(p-r)(q-r)\\begin{vmatrix}\n 1 & pq &r^2\\\\\n 0 & -q&p+r\\\\\n0&-p+q&q-p\n\\end{vmatrix}=\\\\\n=(p-r)(q-r)(q-p)\\begin{vmatrix}\n 1 & pq &r^2\\\\\n 0 & -q&p+r\\\\\n0&1&1\n\\end{vmatrix}"
IIIrow "\\iff" IIrow
"|B|=-(p-r)(q-r)(q-p)\\begin{vmatrix}\n 1 & pq &r^2\\\\\n0&1&1 \\\\\n 0 & -q&p+r\\\\\n\\end{vmatrix}"
IIIrow+IIrow(q)
"|B|=(p-r)(q-r)(p-q)\\begin{vmatrix}\n 1 & pq &r^2\\\\\n 0 & 1&1\\\\\n0&0&p+r+q\n\\end{vmatrix}=\\\\\n=(p-r)(q-r)(p-q)(p+r+q)"
5b)
"|C|=\\begin{vmatrix}\n 1 & (R+1)x&(R+3)^2 \\\\\n 1 & (R+3)x&(R+1)^2\\\\\n1&(R+1)(R+3)&x^2\n\\end{vmatrix}"
In our case
"p=R+1=4+1=5\\\\\nq=x\\\\\nr=R+3=4+3=7"
"|C|=(p-q)(q-r)(p-r)(p+q+r)=\\\\\n=(5-x)(x-7)(5-7)(5+x+7)=\\\\\n=-2(5x-35-x^2+7x)(12+x)=\\\\\n=-2(-x^2+12x-35)(12+x)=\\\\\n=-2(-x^3-109x-420)=2x^3+218x+840"
Comments
Leave a comment