Question #103741
Find the orthogonal canonical reduction of the quadratic form -x²+y²+z²+xy+xz− 6
1
Expert's answer
2020-03-02T08:52:31-0500

x2+y2+z26xy6xz+2yz-x^2+y^2+z^2-6xy-6xz+2yz

The matrix of the quadratic form x2+y2+z26xy6xz+2yz-x^2+y^2+z^2-6xy-6xz+2yz

A=(133311311)A=\begin{pmatrix} -1 & -3 &-3\\ -3& 1&1\\ -3&1&1 \\ \end{pmatrix}

The characteristics equation is

1λ3331λ1311λ\begin{vmatrix} -1-\lambda & -3 &-3\\ -3 & 1-\lambda&1\\ -3&1&1-\lambda\\ \end{vmatrix} =0=0

Hence

λ3D1λ2+D2λD3=0\lambda^3-D_1\lambda^2+D_2\lambda-D_3=0

where

D1=trace(A)=1+1+1=1;D_1=trace(A)=-1+1+1=1;

D2=1331D_2=\begin{vmatrix} -1 & -3\\ -3& 1 \end{vmatrix} + 1331\begin{vmatrix} -1 & -3\\ -3& 1 \end{vmatrix} +1111\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} ==

=(1.1(3)(3))+(1.1(3)(3))+(1.11.1)=(-1.1-(-3)(-3))+(-1.1-(-3)(-3))+(1.1-1.1)

=(19)+(19)+(11)=1010=20=(-1-9)+(-1-9)+(1-1)=-10-10=-20 ;

D3=det(A)=D_3=det(A)= 133311311\begin{vmatrix} -1 & -3 &-3\\ -3 & 1&1\\ -3&1&1\\ \end{vmatrix} =0=0 ,

because the second and the third rows of the matrix  A are equal

Hence,

λ3λ220λ=0\lambda^3-\lambda^2-20\lambda=0

It is easy to see that λ=0\lambda=0 is the root of the equation.

λ3λ220λ=λ(λ2λ20)\lambda^3-\lambda^2-20\lambda=\lambda(\lambda^2-\lambda-20) =λ(λ+4)(λ5)\lambda(\lambda+4)(\lambda-5)

Therefore, the orthogonal canonical reduction of the quadratic form

x2+y2+z26xy6xz+2yz-x^2+y^2+z^2-6xy-6xz+2yz is

Q=Q= (x,y,z)(400000005)(x',y',z')\begin{pmatrix} -4 & 0 &0\\ 0& 0&0\\ 0&0&5 \\ \end{pmatrix} (xyz)\begin{pmatrix} x' &\\ y'&\\ z'\\ \end{pmatrix} =4x2+5z2=-4x'^2+5z'^2






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS