−x2+y2+z2−6xy−6xz+2yz
The matrix of the quadratic form −x2+y2+z2−6xy−6xz+2yz
A=⎝⎛−1−3−3−311−311⎠⎞
The characteristics equation is
∣∣−1−λ−3−3−31−λ1−311−λ∣∣ =0
Hence
λ3−D1λ2+D2λ−D3=0
where
D1=trace(A)=−1+1+1=1;
D2=∣∣−1−3−31∣∣ + ∣∣−1−3−31∣∣ +∣∣1111∣∣ =
=(−1.1−(−3)(−3))+(−1.1−(−3)(−3))+(1.1−1.1)
=(−1−9)+(−1−9)+(1−1)=−10−10=−20 ;
D3=det(A)= ∣∣−1−3−3−311−311∣∣ =0 ,
because the second and the third rows of the matrix A are equal
Hence,
λ3−λ2−20λ=0
It is easy to see that λ=0 is the root of the equation.
λ3−λ2−20λ=λ(λ2−λ−20) =λ(λ+4)(λ−5)
Therefore, the orthogonal canonical reduction of the quadratic form
−x2+y2+z2−6xy−6xz+2yz is
Q= (x′,y′,z′)⎝⎛−400000005⎠⎞ ⎝⎛x′y′z′⎠⎞ =−4x′2+5z′2
Comments