"-x^2+y^2+z^2-6xy-6xz+2yz"
The matrix of the quadratic form "-x^2+y^2+z^2-6xy-6xz+2yz"
"A=\\begin{pmatrix}\n -1 & -3 &-3\\\\\n -3& 1&1\\\\\n -3&1&1 \\\\\n\\end{pmatrix}"
The characteristics equation is
"\\begin{vmatrix}\n -1-\\lambda & -3 &-3\\\\\n -3 & 1-\\lambda&1\\\\\n-3&1&1-\\lambda\\\\\n\\end{vmatrix}" "=0"
Hence
"\\lambda^3-D_1\\lambda^2+D_2\\lambda-D_3=0"
where
"D_1=trace(A)=-1+1+1=1;"
"D_2=\\begin{vmatrix}\n -1 & -3\\\\\n -3& 1\n\\end{vmatrix}" + "\\begin{vmatrix}\n -1 & -3\\\\\n -3& 1\n\\end{vmatrix}" +"\\begin{vmatrix}\n 1 & 1 \\\\\n 1 & 1\n\\end{vmatrix}" "="
"=(-1.1-(-3)(-3))+(-1.1-(-3)(-3))+(1.1-1.1)"
"=(-1-9)+(-1-9)+(1-1)=-10-10=-20" ;
"D_3=det(A)=" "\\begin{vmatrix}\n -1 & -3 &-3\\\\\n -3 & 1&1\\\\\n-3&1&1\\\\\n\\end{vmatrix}" "=0" ,
because the second and the third rows of the matrix A are equal
Hence,
"\\lambda^3-\\lambda^2-20\\lambda=0"
It is easy to see that "\\lambda=0" is the root of the equation.
"\\lambda^3-\\lambda^2-20\\lambda=\\lambda(\\lambda^2-\\lambda-20)" ="\\lambda(\\lambda+4)(\\lambda-5)"
Therefore, the orthogonal canonical reduction of the quadratic form
"-x^2+y^2+z^2-6xy-6xz+2yz" is
"Q=" "(x',y',z')\\begin{pmatrix}\n -4 & 0 &0\\\\\n 0& 0&0\\\\\n 0&0&5 \\\\\n\\end{pmatrix}" "\\begin{pmatrix}\n x' &\\\\\n y'&\\\\\n z'\\\\\n\\end{pmatrix}" "=-4x'^2+5z'^2"
Comments
Leave a comment