Answer to Question #103668 in Linear Algebra for Sourav mondal

Question #103668
Find the orthogonal canonical reduction of the quadratic form
-x²+y²+z²+xy+xz-6yz
. Also, find its principal axes.
1
Expert's answer
2020-03-19T17:33:16-0400

First, determine the matrix of the quadratic form Q=x2+y2+z2+xy+xz6yzQ = -x^2 + y^2 + z^2 + xy + xz - 6yz.


A=[1121212131231]A = \begin{bmatrix} -1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & -3 \\ \frac{1}{2} & -3 & 1 \end{bmatrix}


Find an eigenvalues of matrix AA. To do it, solve the characteristic equation.


det(AλI)=0\det(A-\lambda I) = 0


det(AλI)=1λ1212121λ31231λ\det(A-\lambda I) = \begin{vmatrix} -1-\lambda & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1-\lambda & -3 \\ \frac{1}{2} & -3 & 1-\lambda \end{vmatrix}


=(1λ)1λ331λ12123121λ+12121λ123= (-1-\lambda)\begin{vmatrix} 1 - \lambda & -3 \\ -3 & 1- \lambda \end{vmatrix} - \frac{1}{2} \begin{vmatrix} \frac{1}{2} & -3 \\ \frac{1}{2} & 1- \lambda \end{vmatrix} + \frac{1}{2} \begin{vmatrix} \frac{1}{2} & 1 - \lambda \\ \frac{1}{2} & -3 \end{vmatrix}


=(1λ)[(1λ)29]12[12(1λ)+32]+12[3212(1λ)]= (-1- \lambda)[(1- \lambda)^2 - 9] - \frac{1}{2}[\frac{1}{2}(1- \lambda) + \frac{3}{2}] + \frac{1}{2}[-\frac{3}{2} - \frac{1}{2}(1- \lambda)]


=(1λ)(2λ)(4λ)14(4λ)14(4λ)= (-1- \lambda)(-2- \lambda)(4- \lambda) - \frac{1}{4}(4- \lambda) - \frac{1}{4}(4 - \lambda)


=(4λ)(λ2+3λ+32)= (4 - \lambda)( \lambda^2 + 3 \lambda +\frac{3}{2})


Using the formula for discriminant for the second term, obtain


(4λ)(λ+32+32)(λ+3232)=0(4 - \lambda)(\lambda + \frac{3}{2} + \frac{\sqrt{3}}{2})(\lambda + \frac{3}{2} - \frac{\sqrt{3}}{2}) = 0


Therefore, the eigenvalues, in the decreasing order, are


λ1=4,λ2=32+32,λ3=3232\lambda_{1} = 4, \lambda_{2} = -\frac{3}{2} + \frac{\sqrt{3}}{2}, \lambda_{3} = -\frac{3}{2} - \frac{\sqrt{3}}{2}


Thus, the orthogonal canonical reduction of QQ is


Q=4x12+(32+32)y12+(3232)z12=4x12(3232)y12(32+32)z12Q = 4x_{1}^{2} + ( -\frac{3}{2} + \frac{\sqrt{3}}{2})y_{1}^{2} + ( -\frac{3}{2} - \frac{\sqrt{3}}{2})z_{1}^{2} \\ \\ \quad=4x_{1}^{2} - (\frac{3}{2} - \frac{\sqrt{3}}{2})y_{1}^{2} - ( \frac{3}{2} + \frac{\sqrt{3}}{2})z_{1}^{2}


where x1,y1,z1x_{1}, y_{1}, z_{1} are the new coordinates.


If λ=4\lambda = 4, then


[1412121214312314][xyz]=[000]\begin{bmatrix} -1-4 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1-4 & -3 \\ \frac{1}{2} & -3 & 1-4 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix} =\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}


[5121212331233][xyz]=[000]\begin{bmatrix} -5 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -3 & -3 \\ \frac{1}{2} & -3 & -3 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix} =\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}


[xyz]=[011]\begin{bmatrix} x \\ y \\ z \end{bmatrix} =\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}


The first principal axis is


p1=102+(1)2+12[011]=12[011]p_{1} = \frac{1}{\sqrt{0^2 + (-1)^{2}+1^2}} \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}


If λ=32+32\lambda = -\frac{3}{2} + \frac{\sqrt{3}}{2}, then


[1+32321212121+323231231+3232][xyz]=[000]\begin{bmatrix} -1 +\frac{3}{2} - \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1+\frac{3}{2} - \frac{\sqrt{3}}{2} & -3 \\ \frac{1}{2} & -3 & 1+\frac{3}{2} - \frac{\sqrt{3}}{2} \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix} =\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}



[1232121212523231235232][xyz]=[000]\begin{bmatrix} \frac{1}{2} - \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{5}{2} - \frac{\sqrt{3}}{2} & -3 \\ \frac{1}{2} & -3 & \frac{5}{2} - \frac{\sqrt{3}}{2} \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix} =\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}


[xyz]=[1+311]\begin{bmatrix} x \\ y \\ z \end{bmatrix} =\begin{bmatrix} 1+\sqrt{3} \\ 1 \\ 1 \end{bmatrix}


The second principal axis is


p2=1(1+3)2+12+12[1+311]=16+23[1+311]p_{2} = \frac{1}{\sqrt{(1+\sqrt{3})^2 + 1^{2}+1^2}} \begin{bmatrix} 1+\sqrt{3} \\ 1 \\ 1 \end{bmatrix} \\ \quad = \frac{1}{\sqrt{6+2\sqrt{3}}} \begin{bmatrix} 1+\sqrt{3} \\ 1 \\ 1 \end{bmatrix}


If λ=3232\lambda = -\frac{3}{2} - \frac{\sqrt{3}}{2}, then


[1+32+321212121+32+3231231+32+32][xyz]=[000]\begin{bmatrix} -1 +\frac{3}{2} + \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1+\frac{3}{2} + \frac{\sqrt{3}}{2} & -3 \\ \frac{1}{2} & -3 & 1+\frac{3}{2} + \frac{\sqrt{3}}{2} \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix} =\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}



[12+3212121252+32312352+32][xyz]=[000]\begin{bmatrix} \frac{1}{2} -+\frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{5}{2} + \frac{\sqrt{3}}{2} & -3 \\ \frac{1}{2} & -3 & \frac{5}{2} + \frac{\sqrt{3}}{2} \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix} =\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}



[xyz]=[1311]\begin{bmatrix} x \\ y \\ z \end{bmatrix} =\begin{bmatrix} 1-\sqrt{3} \\ 1 \\ 1 \end{bmatrix}


The third principal axis is


p3=1(13)2+12+12[1311]=1623[1311]p_{3} = \frac{1}{\sqrt{(1-\sqrt{3})^2 + 1^{2}+1^2}} \begin{bmatrix} 1-\sqrt{3} \\ 1 \\ 1 \end{bmatrix} \\ \quad= \frac{1}{\sqrt{6-2\sqrt{3}}} \begin{bmatrix} 1-\sqrt{3} \\ 1 \\ 1 \end{bmatrix}


 The change of basis needed to convert QQ into the orthogonal canonical reduction is given by


[xyz]=[01+36+23136+31216+2316231216+231623][x1y1z1]\begin{bmatrix} x \\ y \\ z \end{bmatrix} =\begin{bmatrix} 0 & \frac{1 + \sqrt{3}}{\sqrt{6+2\sqrt{3}}} & \frac{1 - \sqrt{3}}{\sqrt{6+-\sqrt{3}}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6+2\sqrt{3}}} & \frac{1}{\sqrt{6-2\sqrt{3}}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6+2\sqrt{3}}} & \frac{1}{\sqrt{6-2\sqrt{3}}} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment