First, determine the matrix of the quadratic form "Q = -x^2 + y^2 + z^2 + xy + xz - 6yz".
"A = \\begin{bmatrix}\n -1 & \\frac{1}{2} & \\frac{1}{2} \\\\\n \\frac{1}{2} & 1 & -3 \\\\\n \\frac{1}{2} & -3 & 1\n\\end{bmatrix}"
Find an eigenvalues of matrix "A". To do it, solve the characteristic equation.
"\\det(A-\\lambda I) = 0"
"\\det(A-\\lambda I) = \\begin{vmatrix}\n -1-\\lambda & \\frac{1}{2} & \\frac{1}{2} \\\\\n \\frac{1}{2} & 1-\\lambda & -3 \\\\\n \\frac{1}{2} & -3 & 1-\\lambda\n\\end{vmatrix}"
"= (-1-\\lambda)\\begin{vmatrix}\n 1 - \\lambda & -3 \\\\\n -3 & 1- \\lambda\n\\end{vmatrix} - \\frac{1}{2} \\begin{vmatrix}\n \\frac{1}{2} & -3 \\\\\n \\frac{1}{2} & 1- \\lambda\n\\end{vmatrix} + \\frac{1}{2} \\begin{vmatrix}\n \\frac{1}{2} & 1 - \\lambda \\\\\n \\frac{1}{2} & -3\n\\end{vmatrix}"
"= (-1- \\lambda)[(1- \\lambda)^2 - 9] - \\frac{1}{2}[\\frac{1}{2}(1- \\lambda) + \\frac{3}{2}] + \\frac{1}{2}[-\\frac{3}{2} - \\frac{1}{2}(1- \\lambda)]"
"= (-1- \\lambda)(-2- \\lambda)(4- \\lambda) - \\frac{1}{4}(4- \\lambda) - \\frac{1}{4}(4 - \\lambda)"
"= (4 - \\lambda)( \\lambda^2 + 3 \\lambda +\\frac{3}{2})"
Using the formula for discriminant for the second term, obtain
"(4 - \\lambda)(\\lambda + \\frac{3}{2} + \\frac{\\sqrt{3}}{2})(\\lambda + \\frac{3}{2} - \\frac{\\sqrt{3}}{2}) = 0"
Therefore, the eigenvalues, in the decreasing order, are
"\\lambda_{1} = 4, \\lambda_{2} = -\\frac{3}{2} + \\frac{\\sqrt{3}}{2}, \\lambda_{3} = -\\frac{3}{2} - \\frac{\\sqrt{3}}{2}"
Thus, the orthogonal canonical reduction of "Q" is
"Q = 4x_{1}^{2} + ( -\\frac{3}{2} + \\frac{\\sqrt{3}}{2})y_{1}^{2} + ( -\\frac{3}{2} - \\frac{\\sqrt{3}}{2})z_{1}^{2} \\\\ \\\\\n\\quad=4x_{1}^{2} - (\\frac{3}{2} - \\frac{\\sqrt{3}}{2})y_{1}^{2} - ( \\frac{3}{2} + \\frac{\\sqrt{3}}{2})z_{1}^{2}"
where "x_{1}, y_{1}, z_{1}" are the new coordinates.
If "\\lambda = 4", then
"\\begin{bmatrix}\n -1-4 & \\frac{1}{2} & \\frac{1}{2} \\\\\n \\frac{1}{2} & 1-4 & -3 \\\\\n \\frac{1}{2} & -3 & 1-4\n\\end{bmatrix}\\begin{bmatrix}\n x \\\\\n y \\\\\nz\n\\end{bmatrix} =\\begin{bmatrix}\n 0 \\\\\n 0 \\\\\n0\n\\end{bmatrix}"
"\\begin{bmatrix}\n -5 & \\frac{1}{2} & \\frac{1}{2} \\\\\n \\frac{1}{2} & -3 & -3 \\\\\n \\frac{1}{2} & -3 & -3\n\\end{bmatrix}\\begin{bmatrix}\n x \\\\\n y \\\\\nz\n\\end{bmatrix} =\\begin{bmatrix}\n 0 \\\\\n 0 \\\\\n0\n\\end{bmatrix}"
"\\begin{bmatrix}\n x \\\\\n y \\\\\nz\n\\end{bmatrix} =\\begin{bmatrix}\n 0 \\\\\n -1 \\\\\n1\n\\end{bmatrix}"
The first principal axis is
"p_{1} = \\frac{1}{\\sqrt{0^2 + (-1)^{2}+1^2}} \\begin{bmatrix}\n 0 \\\\\n -1 \\\\\n1\n\\end{bmatrix} = \\frac{1}{\\sqrt{2}} \\begin{bmatrix}\n 0 \\\\\n -1 \\\\\n1\n\\end{bmatrix}"
If "\\lambda = -\\frac{3}{2} + \\frac{\\sqrt{3}}{2}", then
"\\begin{bmatrix}\n -1 +\\frac{3}{2} - \\frac{\\sqrt{3}}{2} & \\frac{1}{2} & \\frac{1}{2} \\\\\n \\frac{1}{2} & 1+\\frac{3}{2} - \\frac{\\sqrt{3}}{2} & -3 \\\\\n \\frac{1}{2} & -3 & 1+\\frac{3}{2} - \\frac{\\sqrt{3}}{2} \n\\end{bmatrix}\\begin{bmatrix}\n x \\\\\n y \\\\\nz\n\\end{bmatrix} =\\begin{bmatrix}\n 0 \\\\\n 0 \\\\\n0\n\\end{bmatrix}"
"\\begin{bmatrix}\n \\frac{1}{2} - \\frac{\\sqrt{3}}{2} & \\frac{1}{2} & \\frac{1}{2} \\\\\n \\frac{1}{2} & \\frac{5}{2} - \\frac{\\sqrt{3}}{2} & -3 \\\\\n \\frac{1}{2} & -3 & \\frac{5}{2} - \\frac{\\sqrt{3}}{2}\n\\end{bmatrix}\\begin{bmatrix}\n x \\\\\n y \\\\\nz\n\\end{bmatrix} =\\begin{bmatrix}\n 0 \\\\\n 0 \\\\\n0\n\\end{bmatrix}"
"\\begin{bmatrix}\n x \\\\\n y \\\\\nz\n\\end{bmatrix} =\\begin{bmatrix}\n 1+\\sqrt{3} \\\\\n 1 \\\\\n1\n\\end{bmatrix}"
The second principal axis is
"p_{2} = \\frac{1}{\\sqrt{(1+\\sqrt{3})^2 + 1^{2}+1^2}} \\begin{bmatrix}\n 1+\\sqrt{3} \\\\\n 1 \\\\\n1\n\\end{bmatrix} \\\\\n\\quad = \\frac{1}{\\sqrt{6+2\\sqrt{3}}} \\begin{bmatrix}\n 1+\\sqrt{3} \\\\\n 1 \\\\\n1\n\\end{bmatrix}"
If "\\lambda = -\\frac{3}{2} - \\frac{\\sqrt{3}}{2}", then
"\\begin{bmatrix}\n -1 +\\frac{3}{2} + \\frac{\\sqrt{3}}{2} & \\frac{1}{2} & \\frac{1}{2} \\\\\n \\frac{1}{2} & 1+\\frac{3}{2} + \\frac{\\sqrt{3}}{2} & -3 \\\\\n \\frac{1}{2} & -3 & 1+\\frac{3}{2} + \\frac{\\sqrt{3}}{2} \n\\end{bmatrix}\\begin{bmatrix}\n x \\\\\n y \\\\\nz\n\\end{bmatrix} =\\begin{bmatrix}\n 0 \\\\\n 0 \\\\\n0\n\\end{bmatrix}"
"\\begin{bmatrix}\n \\frac{1}{2} -+\\frac{\\sqrt{3}}{2} & \\frac{1}{2} & \\frac{1}{2} \\\\\n \\frac{1}{2} & \\frac{5}{2} + \\frac{\\sqrt{3}}{2} & -3 \\\\\n \\frac{1}{2} & -3 & \\frac{5}{2} + \\frac{\\sqrt{3}}{2}\n\\end{bmatrix}\\begin{bmatrix}\n x \\\\\n y \\\\\nz\n\\end{bmatrix} =\\begin{bmatrix}\n 0 \\\\\n 0 \\\\\n0\n\\end{bmatrix}"
"\\begin{bmatrix}\n x \\\\\n y \\\\\nz\n\\end{bmatrix} =\\begin{bmatrix}\n 1-\\sqrt{3} \\\\\n 1 \\\\\n1\n\\end{bmatrix}"
The third principal axis is
"p_{3} = \\frac{1}{\\sqrt{(1-\\sqrt{3})^2 + 1^{2}+1^2}} \\begin{bmatrix}\n 1-\\sqrt{3} \\\\\n 1 \\\\\n1\n\\end{bmatrix} \\\\\n\n\\quad= \\frac{1}{\\sqrt{6-2\\sqrt{3}}} \\begin{bmatrix}\n 1-\\sqrt{3} \\\\\n 1 \\\\\n1\n\\end{bmatrix}"
The change of basis needed to convert "Q" into the orthogonal canonical reduction is given by
"\\begin{bmatrix}\n x \\\\\n y \\\\\nz\n\\end{bmatrix} =\\begin{bmatrix}\n 0 & \\frac{1 + \\sqrt{3}}{\\sqrt{6+2\\sqrt{3}}} & \\frac{1 - \\sqrt{3}}{\\sqrt{6+-\\sqrt{3}}} \\\\\n -\\frac{1}{\\sqrt{2}} & \\frac{1}{\\sqrt{6+2\\sqrt{3}}} & \\frac{1}{\\sqrt{6-2\\sqrt{3}}} \\\\\n \\frac{1}{\\sqrt{2}} & \\frac{1}{\\sqrt{6+2\\sqrt{3}}} & \\frac{1}{\\sqrt{6-2\\sqrt{3}}}\n\\end{bmatrix} \\begin{bmatrix}\n x_1 \\\\\n y_1 \\\\\nz_1\n\\end{bmatrix}"
Comments
Leave a comment