First, determine the matrix of the quadratic form Q=−x2+y2+z2+xy+xz−6yz.
A=⎣⎡−12121211−321−31⎦⎤
Find an eigenvalues of matrix A. To do it, solve the characteristic equation.
det(A−λI)=0
det(A−λI)=∣∣−1−λ2121211−λ−321−31−λ∣∣
=(−1−λ)∣∣1−λ−3−31−λ∣∣−21∣∣2121−31−λ∣∣+21∣∣21211−λ−3∣∣
=(−1−λ)[(1−λ)2−9]−21[21(1−λ)+23]+21[−23−21(1−λ)]
=(−1−λ)(−2−λ)(4−λ)−41(4−λ)−41(4−λ)
=(4−λ)(λ2+3λ+23)
Using the formula for discriminant for the second term, obtain
(4−λ)(λ+23+23)(λ+23−23)=0
Therefore, the eigenvalues, in the decreasing order, are
λ1=4,λ2=−23+23,λ3=−23−23
Thus, the orthogonal canonical reduction of Q is
Q=4x12+(−23+23)y12+(−23−23)z12=4x12−(23−23)y12−(23+23)z12
where x1,y1,z1 are the new coordinates.
If λ=4, then
⎣⎡−1−42121211−4−321−31−4⎦⎤⎣⎡xyz⎦⎤=⎣⎡000⎦⎤
⎣⎡−5212121−3−321−3−3⎦⎤⎣⎡xyz⎦⎤=⎣⎡000⎦⎤
⎣⎡xyz⎦⎤=⎣⎡0−11⎦⎤
The first principal axis is
p1=02+(−1)2+121⎣⎡0−11⎦⎤=21⎣⎡0−11⎦⎤
If λ=−23+23, then
⎣⎡−1+23−232121211+23−23−321−31+23−23⎦⎤⎣⎡xyz⎦⎤=⎣⎡000⎦⎤
⎣⎡21−2321212125−23−321−325−23⎦⎤⎣⎡xyz⎦⎤=⎣⎡000⎦⎤
⎣⎡xyz⎦⎤=⎣⎡1+311⎦⎤
The second principal axis is
p2=(1+3)2+12+121⎣⎡1+311⎦⎤=6+231⎣⎡1+311⎦⎤
If λ=−23−23, then
⎣⎡−1+23+232121211+23+23−321−31+23+23⎦⎤⎣⎡xyz⎦⎤=⎣⎡000⎦⎤
⎣⎡21−+2321212125+23−321−325+23⎦⎤⎣⎡xyz⎦⎤=⎣⎡000⎦⎤
⎣⎡xyz⎦⎤=⎣⎡1−311⎦⎤
The third principal axis is
p3=(1−3)2+12+121⎣⎡1−311⎦⎤=6−231⎣⎡1−311⎦⎤
The change of basis needed to convert Q into the orthogonal canonical reduction is given by
⎣⎡xyz⎦⎤=⎣⎡0−21216+231+36+2316+2316+−31−36−2316−231⎦⎤⎣⎡x1y1z1⎦⎤
Comments
Leave a comment