Question #102915

Let a 4x4 matrix V =

1 x x^2 x^3 //

1 y y^2 y^3 //

1 z z^2 z^3 //

1 w w^2 w^3


Prove that det(V)=(y-x)(z-x)(w-x)(z-y)(w-y)(w-z)


1
Expert's answer
2020-02-17T08:30:56-0500

Det(V)=1xx2x31yy2y31zz2z31ww2w3Det(V)=\begin{vmatrix} 1 & x & x^2 & x^3\\ 1 & y & y^2 & y^3\\ 1 & z & z^2 & z^3\\ 1 & w & w^2 & w^3\\ \end{vmatrix}

=1xx2x30yxy2x2y3x30zxz2x2z3x30wxw2x2w3x3=\begin{vmatrix} 1 & x & x^2 & x^3\\ 0 & y-x & y^2-x^2 & y^3-x^3\\ 0 & z-x & z^2-x^2 & z^3-x^3\\ 0 & w-x & w^2-x^2 & w^3-x^3\\ \end{vmatrix}

Row 2 = Row 2 - Row 1; Row 3 = Row 3 - Row 1; Row 4 = Row 4 - Row 1

=1xx2x30yx(yx)(y+x)(yx)(y2+yx+x2)0zx(zx)(z+x)(zx)(z2+zx+x2)0wx(wx)(w+x)(wx)(w2+wx+x2)=\begin{vmatrix} 1 & x & x^2 & x^3\\ 0 & y-x & (y-x)(y+x) & (y-x)(y^2+yx+x^2)\\ 0 & z-x & (z-x)(z+x) & (z-x)(z^2+zx+x^2)\\ 0 & w-x & (w-x)(w+x) & (w-x)(w^2+wx+x^2)\\ \end{vmatrix}

=(yx)(zx)(wx)1xx2x301(y+x)(y2+yx+x2)01(z+x)(z2+zx+x2)01(w+x)(w2+wx+x2)=(y-x)(z-x)(w-x) \begin{vmatrix} 1 & x & x^2 & x^3\\ 0 & 1 & (y+x) & (y^2+yx+x^2)\\ 0 & 1 & (z+x) & (z^2+zx+x^2)\\ 0 & 1 & (w+x) & (w^2+wx+x^2)\\ \end{vmatrix}

By taking out (yx)(y-x) from Row 2, (zx)(z-x) from Row 3, (wx)(w-x) from Row 4

=(yx)(zx)(wx)1xx2x301y+x(y2+yx+x2)00zy(z2y2+zxyx)00wy(w2y2+wxyx)=(y-x)(z-x)(w-x) \begin{vmatrix} 1 & x & x^2 & x^3\\ 0 & 1 & y+x & (y^2+yx+x^2)\\ 0 & 0 & z-y & (z^2-y^2+zx-yx)\\ 0 & 0 & w-y & (w^2-y^2+wx-yx)\\ \end{vmatrix}

Row 3 = Row 3 - Row 2; Row 4 = Row 4 - Row 2

=(yx)(zx)(wx)1xx2x301y+x(y2+yx+x2)00zy((zy)(z+y)+(zy)x)00wy((wy)(w+y)+(wy)x)=(yx)(zx)(wx)1xx2x301y+x(y2+yx+x2)00zy(zy)(z+y+x)00wy(wy)(w+y+x)=(y-x)(z-x)(w-x) \begin{vmatrix} 1 & x & x^2 & x^3\\ 0 & 1 & y+x & (y^2+yx+x^2)\\ 0 & 0 & z-y & ((z-y)(z+y)+(z-y)x)\\ 0 & 0 & w-y & ((w-y)(w+y)+(w-y)x)\\ \end{vmatrix}​\\ =(y-x)(z-x)(w-x) \begin{vmatrix} 1 & x & x^2 & x^3\\ 0 & 1 & y+x & (y^2+yx+x^2)\\ 0 & 0 & z-y & (z-y)(z+y+x)\\ 0 & 0 & w-y & (w-y)(w+y+x)\\ \end{vmatrix}

=(yx)(zx)(wx)(zy)(wy)1xx2x301y+x(y2+yx+x2)001(z+y+x)001(w+y+x)=(y-x)(z-x)(w-x)(z-y)(w-y) \begin{vmatrix} 1 & x & x^2 & x^3\\ 0 & 1 & y+x & (y^2+yx+x^2)\\ 0 & 0 & 1 & (z+y+x)\\ 0 & 0 & 1 & (w+y+x)\\ \end{vmatrix}

By taking out (zy)(z-y) from Row 3, (wy)(w-y) from Row 4

=(yx)(zx)(wx)(zy)(wy)1xx2x301y+x(y2+yx+x2)001(z+y+x)000(wz)=(y-x)(z-x)(w-x)(z-y)(w-y) \begin{vmatrix} 1 & x & x^2 & x^3\\ 0 & 1 & y+x & (y^2+yx+x^2)\\ 0 & 0 & 1 & (z+y+x)\\ 0 & 0 & 0 & (w-z)\\ \end{vmatrix}

Row 4 = Row 4 - Row 3

=(yx)(zx)(wx)(zy)(wy)(wz)1xx2x301y+x(y2+yx+x2)001(z+y+x)0001=(y-x)(z-x)(w-x)(z-y)(w-y)(w-z) \begin{vmatrix} 1 & x & x^2 & x^3\\ 0 & 1 & y+x & (y^2+yx+x^2)\\ 0 & 0 & 1 & (z+y+x)\\ 0 & 0 & 0 & 1\\ \end{vmatrix}

By taking out (wz)(w-z) from Row 4

=(yx)(zx)(wx)(zy)(wy)(wz).=(y-x)(z-x)(w-x)(z-y)(w-y)(w-z).

Since 1xx2x301y+x(y2+yx+x2)001(z+y+x)0001=1\begin{vmatrix} 1 & x & x^2 & x^3\\ 0 & 1 & y+x & (y^2+yx+x^2)\\ 0 & 0 & 1 & (z+y+x)\\ 0 & 0 & 0 & 1\\ \end{vmatrix} =1

Hence proved.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
17.02.20, 15:31

Thank you for correcting us.

Jake
16.02.20, 07:58

I think the answer is wrong, on the first step, it should be z^3 - x^3 not y^3 - x^3?

LATEST TUTORIALS
APPROVED BY CLIENTS