Let UUU be unitary matrix, λ\lambdaλ be eigenvalue with corresponding eigenvector xxx.
By the definition of unitary operator we have (x,x)=(Ux,Ux)(x,x)=(Ux,Ux)(x,x)=(Ux,Ux) .
But Ux=λxUx=\lambda xUx=λx , so (x,x)=(λx,λx)=λλ‾(x,x)=∣λ∣2(x,x)(x,x)=(\lambda x,\lambda x)=\lambda\overline{\lambda}(x,x)=|\lambda|^2(x,x)(x,x)=(λx,λx)=λλ(x,x)=∣λ∣2(x,x) .
Since (x,x)≠0(x,x)\neq 0(x,x)=0 , we have ∣λ∣2=1|\lambda|^2=1∣λ∣2=1 , that is ∣λ∣=1|\lambda|=1∣λ∣=1 .
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments