Solution
1)
sec(α)=1/cos(α)cos(α)=4/5
from the main trigonometrical identity
sin2(x)+cos2(x)=1 therefore
sin(α)=1−cos2(α)
sin(α)=1−(4/5)2=∣3/5∣
on a condition : α is acute, therefore
sin(α)=3/5
2)
One assumes 180∘<β<270∘, then cot β = 3/4.
Using the main trigonometrical identity
cot2(x)+1=1/sin2(x)
from this expression
sin(x)=1/(cot2(x)+1)
sin(β)=1/((3/4)2+1)=16/25=∣4/5∣on a condition : 180∘<β<270∘, therefore
sin(β)=-4/5.
Similarly, as in the former case we will find cos(β):
cos(β)=1−sin2(β)
cos(β)=1−(−4/5)2=∣3/5∣ on a condition 180∘<β<270∘, therefore
cos(β)=-3/5
3)
cos(α+2β)=cos(α)⋅cos(2β)−sin(α)⋅sin(2β)
cos(2β)=cos2(β)−sin2(β)=9/25−16/25=−7/25
sin(2β)=2sin(β)cos(β)=2(−4/5)(−3/5)=24/25 cos(2β)=-7/25, cos(α)=4/5, sin(2β)=24/25, sin(α)=3/5
cos(α+2β)=4/5⋅(−7/25)−3/5⋅24/25
cos(α+2β)=−28/125−72/125=−100/125=−4/5 Answer:
cos(α+2β)=−4/5
Comments
Leave a comment