Solution
1)
"sec(\u03b1)=1\/cos(\u03b1)"cos(α)=4/5
from the main trigonometrical identity
"sin^2(x)+cos^2(x)=1"therefore
on a condition : α is acute, therefore
sin(α)=3/5
2)
One assumes "180^{\\circ}<\\beta<270^{\\circ}", then cot β = 3/4.
Using the main trigonometrical identity
from this expression
"sin(\u03b2)=\\sqrt{1\/((3\/4)^2+1)}=\\sqrt{16\/25}=|4\/5|"
on a condition : "180^{\\circ}<\\beta<270^{\\circ}", therefore
sin(β)=-4/5.
Similarly, as in the former case we will find cos(β):
"cos(\u03b2)=\\sqrt{1\u2212sin^2(\u03b2)}""cos(\u03b2)=\\sqrt{1\u2212(-4\/5)^2}=|3\/5|"
on a condition "180^{\\circ}<\\beta<270^{\\circ}", therefore
cos(β)=-3/5
3)
"cos(\u03b1+2\u03b2) = cos(\u03b1)\u00b7cos(2\u03b2) - sin(\u03b1)\u00b7sin(2\u03b2)""cos(2\u03b2)=cos^2(\u03b2)-sin^2(\u03b2)=9\/25-16\/25=-7\/25"
"sin(2\u03b2)=2sin(\u03b2)cos(\u03b2)=2(-4\/5)(-3\/5)=24\/25"
cos(2β)=-7/25, cos(α)=4/5, sin(2β)=24/25, sin(α)=3/5
"cos(\u03b1+2\u03b2) = -28\/125-72\/125=-100\/125=-4\/5"
Answer:
"cos(\u03b1+2\u03b2)=-4\/5"
Comments
Leave a comment