Solution
1)
s e c ( α ) = 1 / c o s ( α ) sec(α)=1/cos(α) sec ( α ) = 1/ cos ( α ) cos ( α )=4/5
from the main trigonometrical identity
s i n 2 ( x ) + c o s 2 ( x ) = 1 sin^2(x)+cos^2(x)=1 s i n 2 ( x ) + co s 2 ( x ) = 1 therefore
s i n ( α ) = 1 − c o s 2 ( α ) sin(α)=\sqrt{1−cos^2(α)} s in ( α ) = 1 − co s 2 ( α )
s i n ( α ) = 1 − ( 4 / 5 ) 2 = ∣ 3 / 5 ∣ sin(α)=\sqrt{1−(4/5)^2}=|3/5| s in ( α ) = 1 − ( 4/5 ) 2 = ∣3/5∣
on a condition : α is acute, therefore
sin ( α )=3/5
2)
One assumes 18 0 ∘ < β < 27 0 ∘ 180^{\circ}<\beta<270^{\circ} 18 0 ∘ < β < 27 0 ∘ , then cot β = 3/4.
Using the main trigonometrical identity
c o t 2 ( x ) + 1 = 1 / s i n 2 ( x ) cot^2(x)+1=1/sin^2(x) co t 2 ( x ) + 1 = 1/ s i n 2 ( x )
from this expression
s i n ( x ) = 1 / ( c o t 2 ( x ) + 1 ) sin(x)=\sqrt{1/(cot^2(x)+1)} s in ( x ) = 1/ ( co t 2 ( x ) + 1 )
s i n ( β ) = 1 / ( ( 3 / 4 ) 2 + 1 ) = 16 / 25 = ∣ 4 / 5 ∣ sin(β)=\sqrt{1/((3/4)^2+1)}=\sqrt{16/25}=|4/5| s in ( β ) = 1/ (( 3/4 ) 2 + 1 ) = 16/25 = ∣4/5∣ on a condition : 18 0 ∘ < β < 27 0 ∘ 180^{\circ}<\beta<270^{\circ} 18 0 ∘ < β < 27 0 ∘ , therefore
sin ( β )=-4/5.
Similarly, as in the former case we will find cos ( β ):
c o s ( β ) = 1 − s i n 2 ( β ) cos(β)=\sqrt{1−sin^2(β)} cos ( β ) = 1 − s i n 2 ( β )
c o s ( β ) = 1 − ( − 4 / 5 ) 2 = ∣ 3 / 5 ∣ cos(β)=\sqrt{1−(-4/5)^2}=|3/5| cos ( β ) = 1 − ( − 4/5 ) 2 = ∣3/5∣ on a condition 18 0 ∘ < β < 27 0 ∘ 180^{\circ}<\beta<270^{\circ} 18 0 ∘ < β < 27 0 ∘ , therefore
cos ( β )=-3/5
3)
c o s ( α + 2 β ) = c o s ( α ) ⋅ c o s ( 2 β ) − s i n ( α ) ⋅ s i n ( 2 β ) cos(α+2β) = cos(α)·cos(2β) - sin(α)·sin(2β) cos ( α + 2 β ) = cos ( α ) ⋅ cos ( 2 β ) − s in ( α ) ⋅ s in ( 2 β )
c o s ( 2 β ) = c o s 2 ( β ) − s i n 2 ( β ) = 9 / 25 − 16 / 25 = − 7 / 25 cos(2β)=cos^2(β)-sin^2(β)=9/25-16/25=-7/25 cos ( 2 β ) = co s 2 ( β ) − s i n 2 ( β ) = 9/25 − 16/25 = − 7/25
s i n ( 2 β ) = 2 s i n ( β ) c o s ( β ) = 2 ( − 4 / 5 ) ( − 3 / 5 ) = 24 / 25 sin(2β)=2sin(β)cos(β)=2(-4/5)(-3/5)=24/25 s in ( 2 β ) = 2 s in ( β ) cos ( β ) = 2 ( − 4/5 ) ( − 3/5 ) = 24/25 cos (2 β )=-7/25, cos ( α )=4/5, sin (2 β )=24/25, sin ( α )=3/5
c o s ( α + 2 β ) = 4 / 5 ⋅ ( − 7 / 25 ) − 3 / 5 ⋅ 24 / 25 cos(α+2β) = 4/5·(-7/25) - 3/5·24/25 cos ( α + 2 β ) = 4/5 ⋅ ( − 7/25 ) − 3/5 ⋅ 24/25
c o s ( α + 2 β ) = − 28 / 125 − 72 / 125 = − 100 / 125 = − 4 / 5 cos(α+2β) = -28/125-72/125=-100/125=-4/5 cos ( α + 2 β ) = − 28/125 − 72/125 = − 100/125 = − 4/5 Answer:
c o s ( α + 2 β ) = − 4 / 5 cos(α+2β)=-4/5 cos ( α + 2 β ) = − 4/5
Comments