Answer to Question #92121 in Geometry for Lawrence Malaluan

Question #92121
If sec α = 5/4 and cot β = 3/4, α is acute, and 1800 < β < 2700. Then, cos (α + 2β)
1
Expert's answer
2019-07-29T12:39:05-0400

Solution

1)

sec(α)=1/cos(α)sec(α)=1/cos(α)

cos(α)=4/5

from the main trigonometrical identity

sin2(x)+cos2(x)=1sin^2(x)+cos^2(x)=1

therefore


sin(α)=1cos2(α)sin(α)=\sqrt{1−cos^2(α)}


sin(α)=1(4/5)2=3/5sin(α)=\sqrt{1−(4/5)^2}=|3/5|


on a condition : α is acute, therefore

sin(α)=3/5


2)

One assumes 180<β<270180^{\circ}<\beta<270^{\circ}, then cot β = 3/4.

Using the main trigonometrical identity


cot2(x)+1=1/sin2(x)cot^2(x)+1=1/sin^2(x)

from this expression


sin(x)=1/(cot2(x)+1)sin(x)=\sqrt{1/(cot^2(x)+1)}

sin(β)=1/((3/4)2+1)=16/25=4/5sin(β)=\sqrt{1/((3/4)^2+1)}=\sqrt{16/25}=|4/5|

on a condition : 180<β<270180^{\circ}<\beta<270^{\circ}, therefore

sin(β)=-4/5.

Similarly, as in the former case we will find cos(β):

cos(β)=1sin2(β)cos(β)=\sqrt{1−sin^2(β)}

cos(β)=1(4/5)2=3/5cos(β)=\sqrt{1−(-4/5)^2}=|3/5|

on a condition 180<β<270180^{\circ}<\beta<270^{\circ}, therefore

cos(β)=-3/5

3)

cos(α+2β)=cos(α)cos(2β)sin(α)sin(2β)cos(α+2β) = cos(α)·cos(2β) - sin(α)·sin(2β)

cos(2β)=cos2(β)sin2(β)=9/2516/25=7/25cos(2β)=cos^2(β)-sin^2(β)=9/25-16/25=-7/25

sin(2β)=2sin(β)cos(β)=2(4/5)(3/5)=24/25sin(2β)=2sin(β)cos(β)=2(-4/5)(-3/5)=24/25

cos(2β)=-7/25, cos(α)=4/5, sin(2β)=24/25, sin(α)=3/5


cos(α+2β)=4/5(7/25)3/524/25cos(α+2β) = 4/5·(-7/25) - 3/5·24/25

cos(α+2β)=28/12572/125=100/125=4/5cos(α+2β) = -28/125-72/125=-100/125=-4/5

Answer:

cos(α+2β)=4/5cos(α+2β)=-4/5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment