l = 1 b + c b c [ ( b + c ) 2 − a 2 ] l= \cfrac{1}{b+c}\sqrt{bc[(b+c)^2-a^2]} l = b + c 1 b c [( b + c ) 2 − a 2 ]
is the formula for bisector, where a, b, c are lengths of sides of the triangle .
Hence if b= 6, c=9 and l= 4 3 4\sqrt{3} 4 3
a = ( b + c ) b c − l 2 b c a=(b+c)\sqrt{\cfrac{bc-l^2}{bc}} a = ( b + c ) b c b c − l 2 ,
a = ( 6 + 9 ) 6 ⋅ 9 − ( 4 3 ) 2 6 ⋅ 9 = 5 a=(6+9)\sqrt{\cfrac{6\cdot 9- (4\sqrt{3})^2}{6\cdot 9}}=5 a = ( 6 + 9 ) 6 ⋅ 9 6 ⋅ 9 − ( 4 3 ) 2 = 5 .
The area of a triangle is
S = p ( p − a ) ( p − b ) ( p − c ) S=\sqrt{p(p-a)(p-b)(p-c)} S = p ( p − a ) ( p − b ) ( p − c ) , where
p = a + b + c 2 = 5 + 6 + 9 2 = 10 p=\cfrac{a+b+c}{2}=\cfrac{5+6+9}{2}=10 p = 2 a + b + c = 2 5 + 6 + 9 = 10 .
S = 10 ( 10 − 5 ) ( 10 − 6 ) ( 10 − 9 ) = 10 ⋅ 5 ⋅ 4 ⋅ 1 , S=\sqrt{10(10-5)(10-6)(10-9)}=\sqrt{10\cdot 5\cdot 4\cdot 1}, S = 10 ( 10 − 5 ) ( 10 − 6 ) ( 10 − 9 ) = 10 ⋅ 5 ⋅ 4 ⋅ 1 ,
S = 10 2 S=10\sqrt{2} S = 10 2
Answer: 10 2 10\sqrt{2} 10 2
Comments