Question #90665
Find the area of a triangle if its two sides measures 6 inches and 9 inches, and the bisector of the angle between the sides is 4√3
1
Expert's answer
2019-06-12T14:44:32-0400

l=1b+cbc[(b+c)2a2]l= \cfrac{1}{b+c}\sqrt{bc[(b+c)^2-a^2]}

is the formula for bisector, where a, b, c are lengths of sides of the triangle .

Hence if b= 6, c=9 and l= 434\sqrt{3}

a=(b+c)bcl2bca=(b+c)\sqrt{\cfrac{bc-l^2}{bc}} ,

a=(6+9)69(43)269=5a=(6+9)\sqrt{\cfrac{6\cdot 9- (4\sqrt{3})^2}{6\cdot 9}}=5 .

The area of a triangle is

S=p(pa)(pb)(pc)S=\sqrt{p(p-a)(p-b)(p-c)} , where

p=a+b+c2=5+6+92=10p=\cfrac{a+b+c}{2}=\cfrac{5+6+9}{2}=10 .

S=10(105)(106)(109)=10541,S=\sqrt{10(10-5)(10-6)(10-9)}=\sqrt{10\cdot 5\cdot 4\cdot 1},

S=102S=10\sqrt{2}

Answer: 10210\sqrt{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS