l=1b+cbc[(b+c)2−a2]l= \cfrac{1}{b+c}\sqrt{bc[(b+c)^2-a^2]}l=b+c1bc[(b+c)2−a2]
is the formula for bisector, where a, b, c are lengths of sides of the triangle .
Hence if b= 6, c=9 and l= 434\sqrt{3}43
a=(b+c)bc−l2bca=(b+c)\sqrt{\cfrac{bc-l^2}{bc}}a=(b+c)bcbc−l2 ,
a=(6+9)6⋅9−(43)26⋅9=5a=(6+9)\sqrt{\cfrac{6\cdot 9- (4\sqrt{3})^2}{6\cdot 9}}=5a=(6+9)6⋅96⋅9−(43)2=5 .
The area of a triangle is
S=p(p−a)(p−b)(p−c)S=\sqrt{p(p-a)(p-b)(p-c)}S=p(p−a)(p−b)(p−c) , where
p=a+b+c2=5+6+92=10p=\cfrac{a+b+c}{2}=\cfrac{5+6+9}{2}=10p=2a+b+c=25+6+9=10 .
S=10(10−5)(10−6)(10−9)=10⋅5⋅4⋅1,S=\sqrt{10(10-5)(10-6)(10-9)}=\sqrt{10\cdot 5\cdot 4\cdot 1},S=10(10−5)(10−6)(10−9)=10⋅5⋅4⋅1,
S=102S=10\sqrt{2}S=102
Answer: 10210\sqrt{2}102
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments