"l= \\cfrac{1}{b+c}\\sqrt{bc[(b+c)^2-a^2]}"
is the formula for bisector, where a, b, c are lengths of sides of the triangle .
Hence if b= 6, c=9 and l= "4\\sqrt{3}"
"a=(b+c)\\sqrt{\\cfrac{bc-l^2}{bc}}" ,
"a=(6+9)\\sqrt{\\cfrac{6\\cdot 9- (4\\sqrt{3})^2}{6\\cdot 9}}=5" .
The area of a triangle is
"S=\\sqrt{p(p-a)(p-b)(p-c)}" , where
"p=\\cfrac{a+b+c}{2}=\\cfrac{5+6+9}{2}=10" .
"S=\\sqrt{10(10-5)(10-6)(10-9)}=\\sqrt{10\\cdot 5\\cdot 4\\cdot 1},"
"S=10\\sqrt{2}"
Answer: "10\\sqrt{2}"
Comments
Leave a comment