Question #87448
1.In triangle ABC, side AB has length 10, and the A- and B-medians have length 9 and 12, respectively.
Compute the area of the triangle.

2. Jay is given 99 stacks of blocks, such that the i-th stack has i^2 blocks. Jay must choose a positive
integer N such that from each stack, he may take either 0 blocks or exactly N blocks. Compute the
value Jay should choose for N in order to maximize the number of blocks he may take from the 99
stacks.

3.Let ABCD be a square with side length 4. Consider points P and Q on segments AB and BC,
respectively, with BP = 3 and BQ = 1. Let R be the intersection of AQ and DP. If BR^2 can be
expressed in the form
m/n for coprime positive integers m, n, compute m + n.
please ans fast its urgent...
1
Expert's answer
2019-04-03T10:09:11-0400
1. ΔABC:AB=10,AM=9,BK=12,AK=KC,BM=CM1.\ \Delta ABC: AB=10, AM=9, BK=12, AK=KC, BM=CM

AD:DM=2:1,AD=6,DM=3AD : DM=2:1, AD=6, DM=3BD:DK=2:1,BD=8,DK=4BD : DK=2:1, BD=8, DK=4


ΔABD:p=10+6+82=12\Delta ABD: p={10+6+8 \over 2}=12ΔABD:Area1=12(1210)(126)(128)=24\Delta ABD: Area-1=\sqrt{12(12-10)(12-6)(12-8)}=24

ΔABK:Area2=32Area1=3224=36\Delta ABK: Area_2={3 \over 2}*Area_1={3 \over 2}*24=36

ΔABC:Area3=2Area2=236=72\Delta ABC: Area_3=2*Area_2=2*36=72


2. i=1ki2=k(k+1)(2k+1)62.\ \displaystyle\sum_{i=1}^ki^2={k(k+1)(2k+1) \over 6}

N=i=199i2=99(99+1)(299+1)6=328350N=\displaystyle\sum_{i=1}^{99}i^2={99(99+1)(2*99+1) \over 6}=328350



3. A(0,0),B(0,4),C(4,4),D(4,0),P(0,1),Q(1,4).3.\ A(0, 0), B(0, 4), C(4, 4), D(4, 0), P(0, 1), Q(1, 4).


AQ:y=kx;k=4010=4;y=4xAQ: y=kx; k={4-0 \over 1-0}=4; y=4x

DP:y=mx+b,m=0140=14,b=1,y=14x+1DP: y=mx+b, m={0-1 \over 4-0}={-1 \over 4}, b=1, y=-{1 \over 4}x+1

R:4x=14x+1x=417,y=1617R: 4x=-{1 \over 4}x+1 \Rightarrow x={4 \over 17}, y={16 \over 17}

BR2=(0417)2+(41617)2=2720289=16017=mn{BR}^2=(0-{4 \over 17})^2+(4-{16\over 17})^2={2720 \over289}={160 \over17}={m \over n}

m+n=160+17=177m+n=160+17=177




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS