Using sine rule, we have;
sin20o15=sinγ30=sinαa
The first two equations yields;
sinγ=1530×sin20o⇒γ=sin−1(1530×sin20o)=43.1601778o
but α+γ+20o=180o
⇒α=180o−20o−γ=116.8398222o
Thus the above sine rule becomes;
sin20o15=sin43.1601778o30=sin116.8398222oa
The last two equations yields;
a=sin43.1601778o30×sin116.8398222o=39.13244209
Using Cosine rule;
152=302+a2−2(30)(a)cos20o⇒225=900+a2−60acos20o⇒−675=a2−60acos20o⇒a2−60cos20oa+675⇒a=39.13244209, 17.24911516, (using quadratic formula).
Comments