1)
Gradient (m) of the line = T a n 45 =Tan45 = T an 45
= 1 =1 = 1
Let x = x= x = abscissa
Δ Y Δ x = \frac{\Delta\>Y}{\Delta\>x}= Δ x Δ Y = gradient
6 − ( − 9 2 ) x − ( − 5 2 ) = 1 \frac{6-(-\frac{9}{2})}{x-(\frac{-5}{2})}=1 x − ( 2 − 5 ) 6 − ( − 2 9 ) = 1
6 + 9 2 = x + 5 2 6+\frac{9}{2}=x+\frac{5}{2} 6 + 2 9 = x + 2 5
⟹ x = 8 \implies\>x=8 ⟹ x = 8
2)
Gradient of the line = − 7 − 0 2 − 13 2 = 7 4.5 =\frac{-7-0}{2-\frac{13}{2}}=\frac{7}{4.5} = 2 − 2 13 − 7 − 0 = 4.5 7
The angle that the line makes with horizontal
= T a n − 1 ( 7 4.5 ) =Tan^{-1}(\frac{7}{4.5}) = T a n − 1 ( 4.5 7 )
= 57.26 =57.26 = 57.26
Angle that the line makes with any vertical line
= 90 − 57.26 = 32.74 =90-57.26\\=32.74 = 90 − 57.26 = 32.74
3)
Angle between the lines
= T a n − 1 ( 2 3 ) = 33.69 =Tan^{-1}(\frac{2}{3})=33.69 = T a n − 1 ( 3 2 ) = 33.69
Angle between L 1 L_1 L 1 and horizontal
= T a n − 1 ( − 1 ) = − 45 ° =Tan^{-1}(-1)\\=-45° = T a n − 1 ( − 1 ) = − 45°
Angle between L 2 L_2 L 2 and horizontal
= − 45 + =-45+ = − 45 + -33.69 33.69 33.69
= − 78.69 =-78.69 = − 78.69
Slope of L 2 = T a n ( − 78.69 ) L_2=Tan(-78.69) L 2 = T an ( − 78.69 )
= − 5 =-5 = − 5
Or between L 2 L_2 L 2 and horizontal = − 45 + 33.69 =-45+33.69 = − 45 + 33.69
= − 11.31 =-11.31 = − 11.31
Slope of L 2 = L_2= L 2 = T a n ( − 11.31 ) Tan(-11.31) T an ( − 11.31 )
= − 0.2 =-0.2 = − 0.2
4) Angle between L 2 a n d L 1 = T a n − 1 ( 1 2 ) L_2\>and\,L_1=Tan^{-1}(\frac{1}{2}) L 2 an d L 1 = T a n − 1 ( 2 1 )
= 26.565 =26.565 = 26.565
Angle between L 2 L_2 L 2 and horizontal
= 45 + 26.565 = 71.565 S l o p e = t a n ( 71.565 ) =45+26.565=71.565\\ Slope= tan(71.565) = 45 + 26.565 = 71.565 Sl o p e = t an ( 71.565 )
=3
5) side a= ∣ 1 − 7 7 − 4 ∣ =\begin{vmatrix}
1-7 \\
7-4
\end{vmatrix} = ∣ ∣ 1 − 7 7 − 4 ∣ ∣
( − 6 ) 2 + 3 2 = √ 45 \sqrt{(-6)^2+3^2}=√45 ( − 6 ) 2 + 3 2 = √45
Side b = ∣ 7 − − 3 4 − − 4 ∣ =\begin{vmatrix}
7--3\\
4--4
\end{vmatrix} = ∣ ∣ 7 − − 3 4 − − 4 ∣ ∣
= 1 0 2 + 8 2 ) = √ 164 =\sqrt{10^2+8^2)}=√164 = 1 0 2 + 8 2 ) = √164
Side c=∣ 1 − − 3 7 − − 4 ∣ \begin{vmatrix}
1--3\\
7--4
\end{vmatrix} ∣ ∣ 1 − − 3 7 − − 4 ∣ ∣
= 4 2 + 1 1 2 = √ 137 =\sqrt{4^2+11^2}=√137 = 4 2 + 1 1 2 = √137
Using cosine rule
45 = 164 + 137 − 2 164 × 137 c o s θ 45=164+137-2\sqrt{164×137}\> cos\theta 45 = 164 + 137 − 2 164 × 137 cos θ
C o s θ = 256 299.8 Cos\>\theta=\frac{256}{299.8} C os θ = 299.8 256
θ = 31.36 \theta=31.36 θ = 31.36
Comments