1)
Gradient (m) of the line "=Tan45"
"=1"
Let "x=" abscissa
"\\frac{\\Delta\\>Y}{\\Delta\\>x}=" gradient
"\\frac{6-(-\\frac{9}{2})}{x-(\\frac{-5}{2})}=1"
"6+\\frac{9}{2}=x+\\frac{5}{2}"
"\\implies\\>x=8"
2)
Gradient of the line "=\\frac{-7-0}{2-\\frac{13}{2}}=\\frac{7}{4.5}"
The angle that the line makes with horizontal
"=Tan^{-1}(\\frac{7}{4.5})"
"=57.26"
Angle that the line makes with any vertical line
"=90-57.26\\\\=32.74"
3)
Angle between the lines
"=Tan^{-1}(\\frac{2}{3})=33.69"
Angle between "L_1" and horizontal
"=Tan^{-1}(-1)\\\\=-45\u00b0"
Angle between "L_2" and horizontal
"=-45+" -"33.69"
"=-78.69"
Slope of "L_2=Tan(-78.69)"
"=-5"
Or between "L_2" and horizontal "=-45+33.69"
"=-11.31"
Slope of "L_2=" "Tan(-11.31)"
"=-0.2"
4) Angle between "L_2\\>and\\,L_1=Tan^{-1}(\\frac{1}{2})"
"=26.565"
Angle between "L_2" and horizontal
"=45+26.565=71.565\\\\ Slope= tan(71.565)"
=3
5) side a"=\\begin{vmatrix}\n 1-7 \\\\\n 7-4\n\\end{vmatrix}"
"\\sqrt{(-6)^2+3^2}=\u221a45"
Side b "=\\begin{vmatrix}\n 7--3\\\\\n 4--4\n\\end{vmatrix}"
"=\\sqrt{10^2+8^2)}=\u221a164"
Side c="\\begin{vmatrix}\n 1--3\\\\\n 7--4\n\\end{vmatrix}"
"=\\sqrt{4^2+11^2}=\u221a137"
Using cosine rule
"45=164+137-2\\sqrt{164\u00d7137}\\> cos\\theta"
"Cos\\>\\theta=\\frac{256}{299.8}"
"\\theta=31.36"
Comments
Leave a comment