Question #268564

Problem A.1


The graph below is made of three line segments:


-1 1 2 3 4 5 6 7 8 9 10 11 12


1


2


3


4


y


x


f(x)


g(x)


h(x)


The segments correspond to the following three functions:


f(x) = x − 2, g(x) = p


4 − (x − 6)2 + 2, h(x) = x − 6


Find the total length L of the graph between x = 2 and x = 10.

1
Expert's answer
2021-11-22T15:52:11-0500
g(x)=x2,2x4g(x)=x-2, 2\leq x\leq 4

h(x)=4(x6)2+2,4x8h(x)=\sqrt{4-(x-6)^2}+2, 4\leq x\leq 8

f(x)=x6,8x10f(x)=x-6, 8\leq x\leq 10



g(x)=x2,2x4g(x)=x-2, 2\leq x\leq 4


l1=(42)2=22l_1=(4-2)\sqrt{2}=2\sqrt{2}



h(x)=4(x6)2+2,4x8h(x)=\sqrt{4-(x-6)^2}+2, 4\leq x\leq 8

Hemicircle (x6)2+(y2)2=4,2y4(x-6)^2+(y-2)^2=4, 2\leq y\leq4


l2=12(2π(2))=2πl_2=\dfrac{1}{2}(2\pi(2)) =2\pi

f(x)=x6,8x10f(x)=x-6, 8\leq x\leq 10


l3=(108)2=22l_3=(10-8)\sqrt{2}=2\sqrt{2}

l=l1+l2+l3l=l_1+l_2+l_3

=22+2π+22=2\sqrt{2}+2\pi +2\sqrt{2}

=42+2π (units)=4\sqrt{2}+2\pi \ (units)

l=42+2π (units)l=4\sqrt{2}+2\pi \ (units)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS