g ( x ) = x − 2 , 2 ≤ x ≤ 4 g(x)=x-2, 2\leq x\leq 4 g ( x ) = x − 2 , 2 ≤ x ≤ 4
h ( x ) = 4 − ( x − 6 ) 2 + 2 , 4 ≤ x ≤ 8 h(x)=\sqrt{4-(x-6)^2}+2, 4\leq x\leq 8 h ( x ) = 4 − ( x − 6 ) 2 + 2 , 4 ≤ x ≤ 8
f ( x ) = x − 6 , 8 ≤ x ≤ 10 f(x)=x-6, 8\leq x\leq 10 f ( x ) = x − 6 , 8 ≤ x ≤ 10
g ( x ) = x − 2 , 2 ≤ x ≤ 4 g(x)=x-2, 2\leq x\leq 4 g ( x ) = x − 2 , 2 ≤ x ≤ 4
l 1 = ( 4 − 2 ) 2 = 2 2 l_1=(4-2)\sqrt{2}=2\sqrt{2} l 1 = ( 4 − 2 ) 2 = 2 2
h ( x ) = 4 − ( x − 6 ) 2 + 2 , 4 ≤ x ≤ 8 h(x)=\sqrt{4-(x-6)^2}+2, 4\leq x\leq 8 h ( x ) = 4 − ( x − 6 ) 2 + 2 , 4 ≤ x ≤ 8
Hemicircle ( x − 6 ) 2 + ( y − 2 ) 2 = 4 , 2 ≤ y ≤ 4 (x-6)^2+(y-2)^2=4, 2\leq y\leq4 ( x − 6 ) 2 + ( y − 2 ) 2 = 4 , 2 ≤ y ≤ 4
l 2 = 1 2 ( 2 π ( 2 ) ) = 2 π l_2=\dfrac{1}{2}(2\pi(2)) =2\pi l 2 = 2 1 ( 2 π ( 2 )) = 2 π
f ( x ) = x − 6 , 8 ≤ x ≤ 10 f(x)=x-6, 8\leq x\leq 10 f ( x ) = x − 6 , 8 ≤ x ≤ 10
l 3 = ( 10 − 8 ) 2 = 2 2 l_3=(10-8)\sqrt{2}=2\sqrt{2} l 3 = ( 10 − 8 ) 2 = 2 2
l = l 1 + l 2 + l 3 l=l_1+l_2+l_3 l = l 1 + l 2 + l 3
= 2 2 + 2 π + 2 2 =2\sqrt{2}+2\pi +2\sqrt{2} = 2 2 + 2 π + 2 2
= 4 2 + 2 π ( u n i t s ) =4\sqrt{2}+2\pi \ (units) = 4 2 + 2 π ( u ni t s )
l = 4 2 + 2 π ( u n i t s ) l=4\sqrt{2}+2\pi \ (units) l = 4 2 + 2 π ( u ni t s )
Comments