Question #233139
The base of an Isosceles triangle and the altitude drawn from one of the congruent sides are equal to 18 cm, and 15 cm, respectively. Find the lengths of the side of the triangle.
1
Expert's answer
2021-09-07T00:43:04-0400

Consider Isosceles triangle ABC:AB=BC.ABC:AB=BC. Let ADAD be the altitude drawn from one of the congruent sides.



Given AB=18 cm,AD=15 cm.AB=18\ cm, AD=15\ cm.

Let BD=x cm,CD=y cm.BD=x\ cm, CD=y\ cm. Then BC=AB=(x+y) cm.BC=AB=(x+y)\ cm.


Consider right triangle CAD.CAD. The Pythagorean Theorem


182=152+y218^2=15^2+y^2

Consider right triangle ABD.ABD. The Pythagorean Theorem


(x+y)2=152+x2(x+y)^2=15^2+x^2


y2=99x2+2xy+y2=225+x2\begin{matrix} y^2=99 \\ x^2+2xy+y^2=225+x^2 \end{matrix}

y=311y=3\sqrt{11}2x(311)=1262x(3\sqrt{11})=126

x=211111x=\dfrac{21}{11}\sqrt{11}

y=311y=3\sqrt{11}

AB=BC=211111+311=541111AB=BC=\dfrac{21}{11}\sqrt{11}+3\sqrt{11}=\dfrac{54}{11}\sqrt{11}



541111 cm,541111 cm,18 cm.\dfrac{54}{11}\sqrt{11}\ cm, \dfrac{54}{11}\sqrt{11}\ cm, 18\ cm.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS