Let us consider a parallelogram ABCD and show that AC2+BD2=AB2+BC2+CD2+AD2.
According to Cosine Theorem, AC2=AB2+BC2−2AB⋅BCcos∠ABC and BD2=BC2+CD2−2BC⋅CDcos∠BCD.
Taking into acount then in the parallelogram ABCD the angles ∠ABC and ∠BCD are supplementary, and AB=CD, BC=AD, we conclude that
AC2+BD2=(AB2+BC2−2AB⋅BCcos∠ABC)+(BC2+CD2−2BC⋅CDcos∠BCD)=AB2+BC2−2AB⋅BCcos∠ABC+AD2+CD2−2BC⋅ABcos(180∘−∠ABC)=AB2+BC2+CD2+AD2−2AB⋅BCcos∠ABC+2BC⋅ABcos(∠ABC)=AB2+BC2+CD2+AD2.
Comments