Question #223144

Consider a parallelogram ABCD. Show that AC2 + BD2 = AB2 + BC2 + CD2 + AD2


1
Expert's answer
2021-09-28T00:07:50-0400

Let us consider a parallelogram ABCDABCD and show that AC2+BD2=AB2+BC2+CD2+AD2AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + AD^2.

According to Cosine Theorem, AC2=AB2+BC22ABBCcosABCAC^2=AB^2+BC^2-2AB\cdot BC\cos\angle ABC and BD2=BC2+CD22BCCDcosBCD.BD^2=BC^2+CD^2-2BC\cdot CD\cos\angle BCD.

Taking into acount then in the parallelogram ABCDABCD the angles ABC\angle ABC and BCD\angle BCD are supplementary, and AB=CD, BC=AD,AB=CD,\ BC=AD, we conclude that

AC2+BD2=(AB2+BC22ABBCcosABC)+(BC2+CD22BCCDcosBCD)=AB2+BC22ABBCcosABC+AD2+CD22BCABcos(180ABC)=AB2+BC2+CD2+AD22ABBCcosABC+2BCABcos(ABC)=AB2+BC2+CD2+AD2.AC^2+BD^2=(AB^2+BC^2-2AB\cdot BC\cos\angle ABC)+(BC^2+CD^2-2BC\cdot CD\cos\angle BCD)\\ =AB^2+BC^2-2AB\cdot BC\cos\angle ABC+AD^2+CD^2-2BC\cdot AB\cos(180^{\circ}-\angle ABC)\\ =AB^2+BC^2+CD^2+AD^2-2AB\cdot BC\cos\angle ABC+2BC\cdot AB\cos(\angle ABC)\\ =AB^2+BC^2+CD^2+AD^2.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS