Question #210714

An equilateral triangle ABC has coordinates O(0, 0), B(a, 0) and C(c, d).

a Find c and d in terms of a by using the fact that OB = BC = CO.

b Find the equation of the lines OB, BC and CO.


In any triangle PQR prove that PQ2 + PR2 = 2(PS2 + SR2)

Where S is the midpoint of QR.


Prove that the midpoints of a parallelogram bisect each other using coordinate geometry.

Solution


1
Expert's answer
2022-02-22T00:55:29-0500

1.

a)  

OB=BC=COOB = BC = CO


OB2=BC2=CO2OB^2 = BC^2 = CO^2

a2=(ac)2+(d)2=c2+d2a^2=(a-c)^2+(-d)^2=c^2+d^2

a22ac+c2=c2a^2-2ac+c^2=c^2

c=a2,a0c=\dfrac{a}{2}, a\not=0

a2=a24+d2a^2=\dfrac{a^2}{4}+d^2

d=32a|d|=\dfrac{\sqrt{3}}{2}|a|

Let a>0,d>0.a>0, d>0. Then


c=a2,d=32ac=\dfrac{a}{2}, d=\dfrac{\sqrt{3}}{2}a

b)


OB:y=0OB: y=0

BC:y=3x+3aBC: y=-\sqrt{3}x+\sqrt{3}a

CO:y=3xCO:y=\sqrt{3}x

2.

Let P(0,0),Q(2a,2b),R(2c,2d).P(0,0), Q(2a, 2b), R(2c, 2d). Then S(a+c,b+d).S(a+c, b+d).



PQ2=(2a)2+(2b)2PQ^2=(2a)^2+(2b)^2

PR2=(2c)2+(2d)2PR^2=(2c)^2+(2d)^2

PS2=(a+c)2+(b+d)2PS^2=(a+c)^2+(b+d)^2

SR2=(2c(a+c))2+(2d(b+d))2SR^2=(2c-(a+c))^2+(2d-(b+d))^2

Substitute


2(PS2+SR2)=2PS2+2SR22(PS^2+SR^2)=2PS^2+2SR^2

=2((a+c)2+(b+d)2)+2((ca)2+(db)2)=2((a+c)^2+(b+d)^2)+2((c-a)^2+(d-b)^2)

=2(a2+2ac+c2+b2+2bd+d2)=2(a^2+2ac+c^2+b^2+2bd+d^2)

+2(c22ac+a2+d22bd+d2)+2(c^2-2ac+a^2+d^2-2bd+d^2)

=4a2+4b2+4c2+4d2=4a^2+4b^2+4c^2+4d^2

=(2a)2+(2b)2+(2c)2+(2d)2=(2a)^2+(2b)^2+(2c)^2+(2d)^2

=PQ2+PR2=PQ^2+PR^2

Therefore


PQ2+PR2=2(PS2+SR2)PQ^2+PR^2=2(PS^2+SR^2)

3. Let ABCDABCD be a parallelogram


A(0,0),B(b,h),C(b+d,h),D(d,0)A(0, 0), B(b, h), C(b+d, h), D(d, 0)

BCAD,AD=BCBC\parallel AD, AD=BC

Then


AC:y=hb+dxAC: y=\dfrac{h}{b+d}x

BD:y=hbdxhdbdBD: y=\dfrac{h}{b-d}x-\dfrac{hd}{b-d}

Intersection


hb+dx=hbdxhdbd\dfrac{h}{b+d}x=\dfrac{h}{b-d}x-\dfrac{hd}{b-d}

x(bhdh)=x(bh+dh)bdhd2hx(bh-dh)=x(bh+dh)-bdh-d^2h

2dhx=bdh+d2h2dhx=bdh+d^2h

x=b+d2x=\dfrac{b+d}{2}

y=h(b+d)2(b+d)=h2y=\dfrac{h(b+d)}{2(b+d)}=\dfrac{h}{2}

Point E(b+d2,hd2)E(\dfrac{b+d}{2}, \dfrac{hd}{2}) is the midpoint of the diagonal AC.AC.

Point E(b+d2,hd2)E(\dfrac{b+d}{2}, \dfrac{hd}{2}) is the midpoint of the diagonal BD.BD.

Therefore the diagonal of a parallelogram bisect each other.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS