1.
a)
O B = B C = C O OB = BC = CO OB = BC = CO
O B 2 = B C 2 = C O 2 OB^2 = BC^2 = CO^2 O B 2 = B C 2 = C O 2
a 2 = ( a − c ) 2 + ( − d ) 2 = c 2 + d 2 a^2=(a-c)^2+(-d)^2=c^2+d^2 a 2 = ( a − c ) 2 + ( − d ) 2 = c 2 + d 2
a 2 − 2 a c + c 2 = c 2 a^2-2ac+c^2=c^2 a 2 − 2 a c + c 2 = c 2
c = a 2 , a ≠ 0 c=\dfrac{a}{2}, a\not=0 c = 2 a , a = 0
a 2 = a 2 4 + d 2 a^2=\dfrac{a^2}{4}+d^2 a 2 = 4 a 2 + d 2
∣ d ∣ = 3 2 ∣ a ∣ |d|=\dfrac{\sqrt{3}}{2}|a| ∣ d ∣ = 2 3 ∣ a ∣ Let a > 0 , d > 0. a>0, d>0. a > 0 , d > 0. Then
c = a 2 , d = 3 2 a c=\dfrac{a}{2}, d=\dfrac{\sqrt{3}}{2}a c = 2 a , d = 2 3 a
b)
O B : y = 0 OB: y=0 OB : y = 0
B C : y = − 3 x + 3 a BC: y=-\sqrt{3}x+\sqrt{3}a BC : y = − 3 x + 3 a
C O : y = 3 x CO:y=\sqrt{3}x CO : y = 3 x 2.
Let P ( 0 , 0 ) , Q ( 2 a , 2 b ) , R ( 2 c , 2 d ) . P(0,0), Q(2a, 2b), R(2c, 2d). P ( 0 , 0 ) , Q ( 2 a , 2 b ) , R ( 2 c , 2 d ) . Then S ( a + c , b + d ) . S(a+c, b+d). S ( a + c , b + d ) .
P Q 2 = ( 2 a ) 2 + ( 2 b ) 2 PQ^2=(2a)^2+(2b)^2 P Q 2 = ( 2 a ) 2 + ( 2 b ) 2
P R 2 = ( 2 c ) 2 + ( 2 d ) 2 PR^2=(2c)^2+(2d)^2 P R 2 = ( 2 c ) 2 + ( 2 d ) 2
P S 2 = ( a + c ) 2 + ( b + d ) 2 PS^2=(a+c)^2+(b+d)^2 P S 2 = ( a + c ) 2 + ( b + d ) 2
S R 2 = ( 2 c − ( a + c ) ) 2 + ( 2 d − ( b + d ) ) 2 SR^2=(2c-(a+c))^2+(2d-(b+d))^2 S R 2 = ( 2 c − ( a + c ) ) 2 + ( 2 d − ( b + d ) ) 2 Substitute
2 ( P S 2 + S R 2 ) = 2 P S 2 + 2 S R 2 2(PS^2+SR^2)=2PS^2+2SR^2 2 ( P S 2 + S R 2 ) = 2 P S 2 + 2 S R 2
= 2 ( ( a + c ) 2 + ( b + d ) 2 ) + 2 ( ( c − a ) 2 + ( d − b ) 2 ) =2((a+c)^2+(b+d)^2)+2((c-a)^2+(d-b)^2) = 2 (( a + c ) 2 + ( b + d ) 2 ) + 2 (( c − a ) 2 + ( d − b ) 2 )
= 2 ( a 2 + 2 a c + c 2 + b 2 + 2 b d + d 2 ) =2(a^2+2ac+c^2+b^2+2bd+d^2) = 2 ( a 2 + 2 a c + c 2 + b 2 + 2 b d + d 2 )
+ 2 ( c 2 − 2 a c + a 2 + d 2 − 2 b d + d 2 ) +2(c^2-2ac+a^2+d^2-2bd+d^2) + 2 ( c 2 − 2 a c + a 2 + d 2 − 2 b d + d 2 )
= 4 a 2 + 4 b 2 + 4 c 2 + 4 d 2 =4a^2+4b^2+4c^2+4d^2 = 4 a 2 + 4 b 2 + 4 c 2 + 4 d 2
= ( 2 a ) 2 + ( 2 b ) 2 + ( 2 c ) 2 + ( 2 d ) 2 =(2a)^2+(2b)^2+(2c)^2+(2d)^2 = ( 2 a ) 2 + ( 2 b ) 2 + ( 2 c ) 2 + ( 2 d ) 2
= P Q 2 + P R 2 =PQ^2+PR^2 = P Q 2 + P R 2 Therefore
P Q 2 + P R 2 = 2 ( P S 2 + S R 2 ) PQ^2+PR^2=2(PS^2+SR^2) P Q 2 + P R 2 = 2 ( P S 2 + S R 2 )
3. Let A B C D ABCD A BC D be a parallelogram
A ( 0 , 0 ) , B ( b , h ) , C ( b + d , h ) , D ( d , 0 ) A(0, 0), B(b, h), C(b+d, h), D(d, 0) A ( 0 , 0 ) , B ( b , h ) , C ( b + d , h ) , D ( d , 0 )
B C ∥ A D , A D = B C BC\parallel AD, AD=BC BC ∥ A D , A D = BC Then
A C : y = h b + d x AC: y=\dfrac{h}{b+d}x A C : y = b + d h x
B D : y = h b − d x − h d b − d BD: y=\dfrac{h}{b-d}x-\dfrac{hd}{b-d} B D : y = b − d h x − b − d h d Intersection
h b + d x = h b − d x − h d b − d \dfrac{h}{b+d}x=\dfrac{h}{b-d}x-\dfrac{hd}{b-d} b + d h x = b − d h x − b − d h d
x ( b h − d h ) = x ( b h + d h ) − b d h − d 2 h x(bh-dh)=x(bh+dh)-bdh-d^2h x ( bh − d h ) = x ( bh + d h ) − b d h − d 2 h
2 d h x = b d h + d 2 h 2dhx=bdh+d^2h 2 d h x = b d h + d 2 h
x = b + d 2 x=\dfrac{b+d}{2} x = 2 b + d
y = h ( b + d ) 2 ( b + d ) = h 2 y=\dfrac{h(b+d)}{2(b+d)}=\dfrac{h}{2} y = 2 ( b + d ) h ( b + d ) = 2 h Point E ( b + d 2 , h d 2 ) E(\dfrac{b+d}{2}, \dfrac{hd}{2}) E ( 2 b + d , 2 h d ) is the midpoint of the diagonal A C . AC. A C .
Point E ( b + d 2 , h d 2 ) E(\dfrac{b+d}{2}, \dfrac{hd}{2}) E ( 2 b + d , 2 h d ) is the midpoint of the diagonal B D . BD. B D .
Therefore the diagonal of a parallelogram bisect each other.
Comments