An equilateral triangle ABC has coordinates O(0, 0), B(a, 0) and C(c, d).
a Find c and d in terms of a by using the fact that OB = BC = CO.
b Find the equation of the lines OB, BC and CO.
In any triangle PQR prove that PQ2 + PR2 = 2(PS2 + SR2)
Where S is the midpoint of QR.
Prove that the midpoints of a parallelogram bisect each other using coordinate geometry.
Solution
1.
a) Â
"OB = BC = CO"
"a^2=(a-c)^2+(-d)^2=c^2+d^2"
"a^2-2ac+c^2=c^2"
"c=\\dfrac{a}{2}, a\\not=0"
"a^2=\\dfrac{a^2}{4}+d^2"
"|d|=\\dfrac{\\sqrt{3}}{2}|a|"
Let "a>0, d>0." Then
b)
"BC: y=-\\sqrt{3}x+\\sqrt{3}a"
"CO:y=\\sqrt{3}x"
2.
Let "P(0,0), Q(2a, 2b), R(2c, 2d)." Then "S(a+c, b+d)."
"PR^2=(2c)^2+(2d)^2"
"PS^2=(a+c)^2+(b+d)^2"
"SR^2=(2c-(a+c))^2+(2d-(b+d))^2"
Substitute
"=2((a+c)^2+(b+d)^2)+2((c-a)^2+(d-b)^2)"
"=2(a^2+2ac+c^2+b^2+2bd+d^2)"
"+2(c^2-2ac+a^2+d^2-2bd+d^2)"
"=4a^2+4b^2+4c^2+4d^2"
"=(2a)^2+(2b)^2+(2c)^2+(2d)^2"
"=PQ^2+PR^2"
Therefore
3. Let "ABCD" be a parallelogram
"BC\\parallel AD, AD=BC"
Then
"BD: y=\\dfrac{h}{b-d}x-\\dfrac{hd}{b-d}"
Intersection
"x(bh-dh)=x(bh+dh)-bdh-d^2h"
"2dhx=bdh+d^2h"
"x=\\dfrac{b+d}{2}"
"y=\\dfrac{h(b+d)}{2(b+d)}=\\dfrac{h}{2}"
Point "E(\\dfrac{b+d}{2}, \\dfrac{hd}{2})" is the midpoint of the diagonal "AC."
Point "E(\\dfrac{b+d}{2}, \\dfrac{hd}{2})" is the midpoint of the diagonal "BD."
Therefore the diagonal of a parallelogram bisect each other.
Comments
Leave a comment