1.
a)
OB=BC=CO
OB2=BC2=CO2
a2=(a−c)2+(−d)2=c2+d2
a2−2ac+c2=c2
c=2a,a=0
a2=4a2+d2
∣d∣=23∣a∣ Let a>0,d>0. Then
c=2a,d=23a
b)
OB:y=0
BC:y=−3x+3a
CO:y=3x 2.
Let P(0,0),Q(2a,2b),R(2c,2d). Then S(a+c,b+d).
PQ2=(2a)2+(2b)2
PR2=(2c)2+(2d)2
PS2=(a+c)2+(b+d)2
SR2=(2c−(a+c))2+(2d−(b+d))2 Substitute
2(PS2+SR2)=2PS2+2SR2
=2((a+c)2+(b+d)2)+2((c−a)2+(d−b)2)
=2(a2+2ac+c2+b2+2bd+d2)
+2(c2−2ac+a2+d2−2bd+d2)
=4a2+4b2+4c2+4d2
=(2a)2+(2b)2+(2c)2+(2d)2
=PQ2+PR2 Therefore
PQ2+PR2=2(PS2+SR2)
3. Let ABCD be a parallelogram
A(0,0),B(b,h),C(b+d,h),D(d,0)
BC∥AD,AD=BC Then
AC:y=b+dhx
BD:y=b−dhx−b−dhd Intersection
b+dhx=b−dhx−b−dhd
x(bh−dh)=x(bh+dh)−bdh−d2h
2dhx=bdh+d2h
x=2b+d
y=2(b+d)h(b+d)=2hPoint E(2b+d,2hd) is the midpoint of the diagonal AC.
Point E(2b+d,2hd) is the midpoint of the diagonal BD.
Therefore the diagonal of a parallelogram bisect each other.
Comments