Given the following data of a quadrilateral: ∠ABC=104°, ∠BCD=89°, ∠ABD=60°, ∠ACD=53°, and AD=1000 m
1.)Determine the length of line BC (in meters, 2 decimal place):
2.)Determine ∠CAD:
3.)Determine ∠BDA:
Values to find: "x, y, BC" (see picture).
1) Obviously "x+y=80\\degree". Via Sinus Theorem
"AB=\\frac{AC \\sin(36\\degree)}{\\sin(104\\degree)}" & "AD=\\frac{AC\\sin(53\\degree)}{\\sin(37\\degree+y)}" & "AB=\\frac{AD\\sin(y)}{\\sin(60\\degree)}" =>
"\\frac{AC\\sin(53\\degree)\\sin(y)}{\\sin(37\\degree+y)\\sin(60\\degree)}=\\frac{AC\\sin(36\\degree)}{\\sin(104\\degree)}"
Using "\\sin(53\\degree)=\\sin(90\\degree-37\\degree)=\\cos(37\\degree)" we can rewrite previous equation as
"\\frac{\\cos(37\\degree)\\sin(y)}{\\sin(37\\degree)\\cos(y)+\\cos(37\\degree)\\sin(y)}=\\frac{\\sin(60\\degree)\\sin(36\\degree)}{\\sin(104\\degree)}" =>
"\\frac{\\sin(104\\degree)}{\\sin(60\\degree)\\sin(36\\degree)}=1+\\tg(37\\degree)\\ctg(y)" =>
"y=\\arctg\\biggr[\\frac{1}{\\tg(37\\degree)}(\\frac{\\sin(104\\degree)}{\\sin(60\\degree)\\sin(36\\degree)}-1)\\biggl]"
"y \\approx\\arctg(1,19)\\approx 40\\degree"
"x=80\\degree-y\\approx 40\\degree"
2) Via Sinus Theorem "AB=\\frac{BC\\sin(36\\degree)}{\\sin(40\\degree)}" & "AB=\\frac{AD\\sin(y)}{\\sin(60\\degree)}" =>
"BC=\\frac{AD\\sin(y)\\sin(40\\degree)}{\\sin(60\\degree)\\sin(36\\degree)}"
"BC\\approx 1000m*0,798=798m"
Comments
Leave a comment